Home > Press > Iranian Scientists Discover New Electrical Device for Rapid Diagnosis of Cancer
Abstract:
Iranian researchers from University of Tehran and Shahid Beheshti University developed a novel method based on new physics for quick diagnosis of cancer in tissue cells at single-cell resolution.
To this end, the researchers succeeded in the discovery of a new piece based on novel electrical mechanism to electrically analyze cells, and its application in cancer diagnosis with high accuracy.
One of the researchers, Dr. Mohajerzadeh, explained about the procedure of the research. "We produced a sensor based on carbon nanotubes to detect the level of metastasis cancerous single-cell comparing to healthier cells only through direct extraction of cell membrane impedance signal with carbon nanotubes. The system introduces new physics in the diagnosis of cancer, and it also includes a new piece with the ability to become clinical in medical experiments. The structure was designed and produced under the title ‘electrical endoscope of cancerous single-cell based on carbon nanotubes'. We succeeded in detecting reduction in electrical impedance in the cells with higher cancerous levels in comparison to the cells with lower cancerous levels at single-cell resolution."
The important point in this research is the simultaneous discovery of a new piece based on a novel electrical mechanism to electrically analyze cells and its application in the diagnosis of cancer with high accuracy. The plan has the ability to substitute complicated and expensive pathologic test. At the same time, the accuracy of the plan enables it to be used in diagnosis purposes both in the number of tested cells and in the detection of middle grades of cancerous cells, which many of medical tests are not able to do it. Moreover, it has applications in studying various living cells and the effects of environmental stresses, drugs, and waves on them through the analysis of electrical signals in their membranes.
A part of the research is at patent pending condition in USPTO and the new results will be filed in USPTO soon. The recent results of the research have been published in Nanoscale, vol. 8, 2013, pp. 3421-3427.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Sensors
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||