Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Unexpected behavior of well-known catalysts

Dr. Magdalena Bonarowska from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw puts a weighted amount of Pd-Cu/SiO2 catalyst into an experimental setup for studying catalytic hydrogen-assisted dechlorination of tetrachloromethane.

Credit: IPC PAS / Grzegorz Krzyżewski
Dr. Magdalena Bonarowska from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw puts a weighted amount of Pd-Cu/SiO2 catalyst into an experimental setup for studying catalytic hydrogen-assisted dechlorination of tetrachloromethane.

Credit: IPC PAS / Grzegorz Krzyżewski

Abstract:
Industrial palladium-copper catalysts change their structures before they get to work, already during the activation process. As a result, the reaction is catalysed by a catalyst that is different from the one originally prepared for it. This surprising discovery was made by researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw.

Unexpected behavior of well-known catalysts

Warsaw, Poland | Posted on June 20th, 2013

Removing of nitrates from ground water or chlorine from dry cleaning wastes are important environmental protection operations that require the use of appropriate catalysts. Popular catalysts include well-known silica-supported palladium-copper catalysts. A team of researchers led by Prof. Zbigniew Karpiński from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw has shown that these catalysts behave differently than assumed to date.

Catalyst is a chemical that speeds up a chemical reaction by participating in it and is regenerated after the reaction is completed. Apart from profiting from shorter reaction time, the use of a catalyst may result in increased reaction selectivity, i.e., a higher yield of the target product as compared with the by-products.

Selective catalysts are usually systems composed of more than one metal. Palladium catalysts are often modified with copper. Active catalyst nanoparticles are deposited on a silica (SiO2) support. Before reaction, so prepared palladium-copper (Pd-Cu) catalyst is heated at high temperature in the presence of hydrogen. The purpose of the operation is to activate the catalyst, which means to provide the catalyst's atoms with energy allowing them for participation in the final reaction.

The ratio of amounts of both metals used in the catalyst has a substantial effect on the operational efficiency of a bimetallic catalyst. "With x-ray measurements we discovered something the researchers were not aware of to date", says Dr Magdalena Bonarowska (IPC PAS). Analytical results indicated that during the activation process in the hydrogen atmosphere at temperatures above 400 °C palladium interacts with silica in the support - and so escapes from active catalyst's nanoparticles. "A catalyst originally composed of, say, 75% palladium and 25% copper can have the ratio of metals strongly disturbed, for instance 50% to 50%. Moreover, its crystal structure changes. This means that the reaction will be catalysed by a catalyst that is different from the one originally prepared!", states Dr Bonarowska.

Palladium losses from the active catalyst's nanoparticles lead to faster catalyst deactivation. Practically, it translates into additional, substantial costs related to unloading of a chemical reactor and regeneration or even replacement of the catalyst inside the reactor.

"It's not uncommon that silica-supported palladium-copper catalysts must be activated at temperatures as high as 500 °C. The operation aims at possibly ideal mixing of both metals dispersed on the surface of the support. It is, however, worth to consider if - provided the target reaction allows for that - the activation of the catalyst at lower temperatures, but for instance for a longer time, wouldn't be a better solution", notices Prof. Karpiński.

Palladium-copper catalysts on various supports, including silica, are used for removal of nitrates from ground water, and for selective reduction of numerous organic chemicals, including the reduction of nitro compounds to amines, and unsaturated hydrocarbons (e.g., acetylene to ethylene or butadiene to butene). They are also used for electrocatalytic oxidation of methanol and hydrogen-assisted dechlorination, i.e., chlorine removal from harmful organic chemicals with hydrogen.

###

This press release was prepared thanks to the NOBLESSE grant under the activity "Research potential" of the 7th Framework Programme of the European Union.

####

About Institute of Physical Chemistry of the Polish Academy of Sciences
The Institute of Physical Chemistry of the Polish Academy of Sciences was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialise specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually.

For more information, please click here

Contacts:
Zbigniew Karpinski
tel. +48 22 3433356

Copyright © Institute of Physical Chemistry of the Polish Academy of Sci

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Website of the Institute of Physical Chemistry of the Polish Academy of Sciences:

Press releases of the Institute of Physical Chemistry of the PAS:

Related News Press

Chemistry

Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Environment

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project