Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Singamaneni to develop new biosensors with NSF CAREER Award

Srikanth Singamaneni
Srikanth Singamaneni

Abstract:
Biomedical sensors using metal nanoparticles hold great promise for the early detection of disease. But the current class of sensors has little or no shelf life, and creating and using them is expensive.

Singamaneni to develop new biosensors with NSF CAREER Award

St. Louis, MO | Posted on June 3rd, 2013

Srikanth Singamaneni, PhD, assistant professor of materials science in the School of Engineering & Applied Science at Washington University in St. Louis, plans to develop a low-cost biosensor that is more stable, sensitive and specific with funds from a Faculty Early Career Development (CAREER) Award he has received from the National Science Foundation.

The prestigious awards support junior faculty who model the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations. Singamaneni, who focuses on biomedical applications of plasmonic nanostructures, is the 19th faculty member from the School of Engineering & Applied Science to receive a CAREER award since 1996.

With the five-year, $400,000 award, Singamaneni plans to create a novel class of biosensors based on self-assembled clusters of metal nanoparticles that have been imprinted with artificial antibodies specific to target biomarkers, which can be indicators of disease. The goal of the work is twofold: to clarify the nature of artificial antibody-antigen interactions, which will enable him and his team to devise new methods to identify monoclonal artificial antibodies that are highly specific to the target biochemical substances; and to design and fabricate self-assembled, hierarchical metal nanoparticle cluster arrays, which will serve as highly sensitive optical sensors and integrate artificial antibodies with such plasmonic nanocluster arrays.

"We intend to gain some fundamental understanding of how these artificial antibody interactions are happening," he says. "In particular, we are interested in identifying the physical and chemical factors that dictate the selectivity of the artificial antibodies. We're hoping that these experiments will help us to improve the specificity and sensitivity of these sensors we're trying to build."

Most of the previous work related to plasmonic biosensors is based on natural antibodies as target recognition elements. While these sensors are very sensitive and offer great promise for point-of-care diagnostics, natural antibodies have a short shelf life and are expensive and time-consuming to develop and apply. Addressing these issues, Singamaneni and the team used artificial antibodies to create the plasmonic biosensors. Artificial antibodies have been fabricated by a method called surface molecular imprinting.

This process involves attaching the target proteins to the surface of gold nanorods, then adding small molecules around the proteins to form a polymer layer around the outside of the nanorods. The target proteins are removed to leave cavities on the surface of the nanorods. When the nanorods with the artificial antibodies are exposed to a substance, such as urine, that contains the target protein, those proteins settle into the cavities. These antibodies are polyclonal antibodies, which can bind to a nanoparticle in any orientation.

In the new work funded by the CAREER award, Singamaneni plans to use a similar process, but this time use polyhistidine-tagged proteins to ensure that the artificial antibodies will bind to the nanoparticle in a very precise orientation, similar to a puzzle piece fitting into a jigsaw puzzle. This process would create monoclonal antibodies, or very specific antibodies designed to target a specific recognition site of the target protein.

"If we are successful, this will be the first time anyone has created monoclonal artificial antibodies on plasmonic nanostructures," Singamaneni says.

In addition, Singamaneni plans to study the binding interaction between the artificial antibodies and antigens at the molecular level using a technique called surface force spectroscopy.

"Our previous work of fabricating artificial antibodies directly on plasmonic nanostructures was a pioneering work - we were the first to do it," Singamaneni says. "That's why with this new class of sensors, we need to understand the basic science associated with it. We are trying to go after the unknowns so that the fundamental understanding that we gain through this project is applicable to almost any kind of protein-artificial antibody combination."

In another part of the project, Singamaneni plans to invite one or two high-school science teachers to spend a summer working in his lab to be immersed in nanotechnology. At the end of the two summers, Singamaneni, the teachers, and representatives of the university's Institute for School Partnership will formulate a curriculum to teach nanotechnology in Kindergarten through 12th grade.

"We are also hoping to develop a nanotechnology kit that we can market nationwide," he says. "Students would be able to work with nanoparticles in solutions with different pH so that they will see changes in colors. This will prompt discussion and get them interested in nanotechnology."

####

About Washington University in St. Louis
The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 82 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, 700 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners — across disciplines and across the world — to contribute to solving the greatest global challenges of the 21st century.

For more information, please click here

Contacts:
Neil Schoenherr
Senior News Director
(314) 935-5235


Srikanth Singamaneni
Assistant professor of mechanical engineering & materials science
314-935-5407

Copyright © Washington University in St. Louis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project