Home > Press > Dreidel-like dislocations lead to remarkable properties: Rice University theory predicts formation of conductive sub-nano ‘wires’ in two-dimensional materials
![]() |
Animated illustration show the precise arrangement of atoms in dislocations in two-dimensional molybdenum/sulfur. Dislocations happen when two growing blooms of material come together at different angles in chemical vapor deposition. At a specific angle, the lines along which these dislocations form can become conductive. (Xiaolong Zou/Yakobson Lab) |
Abstract:
A new material structure predicted at Rice University offers the tantalizing possibility of a signal path smaller than the nanowires for advanced electronics now under development at Rice and elsewhere.
Theoretical physicist Boris Yakobson and postdoctoral fellow Xiaolong Zou were investigating the atomic-scale properties of two-dimensional materials when they found to their surprise that a particular formation, a grain boundary in metal disulfides, creates a metallic - and therefore conducting - path only a fraction of a nanometer wide.
That's basically the width of a chain of atoms, Yakobson said.
The discovery reported this week in the American Chemical Society journal Nano Letters sprang from an investigation of how atoms energetically relate to each other and form topological defects in two-dimensional semiconductors. In recent work, Yakobson's group has analyzed defects in graphene, the single-atom sheet of carbon that is under intense scrutiny by labs around the world.
But flat graphene has no band gap; electrons flow straight through. "There is a lot of effort to open a gap in graphene, but this is not easy," said Yakobson, Rice's Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science and professor of chemistry. "People are trying different ways, but none of them are straightforward. This motivated the search for other two-dimensional materials."
Molybdenum/sulfur (or tungsten/sulfur) materials are becoming interesting to scientists because they have a useful natural band gap, about two electron volts in the case of molybdenum/sulfur. And while they are technically two-dimensional materials, the energies at play force their atoms into a staggered arrangement.
"It's more complex than graphene," Yakobson said. "There's a layer of metal in the middle, with sulfur atoms above and below, but they're fully connected by covalent bonds in a honeycomb lattice, so it's one compound."
Chemical vapor deposition is typically used to grow such material; under high temperatures the atoms (like carbon for graphene) fall into line and form sheets. But when two such blooms appear and they meet, they don't necessarily line up. Where they merge, they form what are called "grain boundaries," akin to grains in wood that join at awkward angles. (Think of a branch meeting a tree trunk.) Those grain boundaries affect the electrical properties of the merged material.
Zou calculated those properties based on the atomic energies of the elements. In looking at the elemental bonds, the researchers found the expected "dislocations" where the energies force atoms out of their regular patterns. "Where the sheets meet, they cannot have an ideal lattice structure, so they have these stitches, the dislocations. Each grain boundary is just a series of these dislocations," Yakobson said.
It was only coincidence that the dislocations took on dreidel-like shapes for a paper published during Hanukkah, he said.
"We found order in this complexity and chaos, the exact structures that are possible at the grain boundaries and the dislocations types," he said.
The growing molybdenum/sulfur sheets can meet at any angle, and though the sheets are semiconducting, the boundaries between them generally stop electrical signals in their tracks. But at one particular angle — 60 degrees — the periodic dislocations are close enough to pass signals on from one to the next along the length of the boundary. "Basically, they're metallic in this direction," Yakobson said.
"So in the middle of these domains of semiconducting material, you have this boundary line that carries current in one direction, like a wire. And it's only a few angstroms wide," he said.
"Metal disulfides may be promising for future electronic devices based on materials with reduced dimensions," Zou said. "It is important to understand the effects of topological defects on the electronic properties as we push toward post-silicon devices."
Yuanyue Liu, a graduate student in Yakobson's group, is a co-author of the paper.
A U.S. Army Research Office Multidisciplinary University Research Initiative grant and the National Science Foundation (NSF) supported the research. Computations were performed at the NSF-funded Data Analysis and Visualization Cyberinfrastructure at Rice.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to tinyurl.com/AboutRice.
Follow Rice News and Media Relations via Twitter @RiceUNews
For more information, please click here
Contacts:
David Ruth
713-348-6327
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Chip Technology
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Announcements
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |