Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Isoporous membranes of polystyrene-block-poly(ethylene oxide)

Abstract:
The formation of isoporous membranes is a sensitive process dependent on molecular, solution, and processing parameters. Writing in the Journal of Polymer Science: Polymer Physics, Volker Abetz and colleagues use a combination of block self-assembly and phase inversion to prepare asymmetric membranes with highly ordered hexagonally packed cylinders composed of polystyrene-block-poly(ethylene oxide).

Isoporous membranes of polystyrene-block-poly(ethylene oxide)

Germany | Posted on November 24th, 2012

The self-assembled nanostructured systems were a limiting factor in pharmaceutical and separation systems because of biofouling. Modifying the surface of the material with poly(ethylene oxide), they exhibit improved protein resistance, water solubility and blood compatibility. The advantages of the properties and self-assembly of polystyrene-block-poly(ethylene oxide) with the nonsolvent induced phase inversion for controlled orientation were combined to obtain the first integral-asymmetric membrane with an isoporous top layer.

"Our results provide a detailed insight in the structure formation of integral-asymmetric, isoporous membranes of polystyrene-block-poly(ethylene oxide). These were carried out via dynamic light scattering and cloud point determinations. Based on our results we successfully set parameters like non-solvent, solvent composition and evaporation time," says Abetz. "Poly(ethylene oxide) is widely known to prevent membrane biofouling. Furthermore it is proven to be biocompatible. For this reason these membranes offer a high potential for medical and biotechnological applications."

The interplay of the nonsolvent and the solvent system was evaluated and the selectivity of the solvent for individual blocks was adjusted. The structure formation is strongly influenced by the selection of the solvent system and the nonsolvent bath.

"Since this process is sensitive to a huge number of parameters, the challenge of our work was to investigate some of these parameters like evaporation time, polymer concentration and the solvent and non-solvent system. Therefore, we offer insight into the thermodynamic properties of the ternary system of the block copolymer, solvent and non-solvent system," explains Abetz.

Further research will focus on the study the structure formation of block copolymers of this type with various molecular weights and volume fractions. Furthermore the researchers plan to optimize the flux properties and to determine the fouling properties of these membranes over long periods of time.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project