Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists use molecular layers to study nanoscale heat transfer

Abstract:
Scientific research has provided us with a fundamental understanding of how light (via photons) and electricity (via electrons) move within and between materials at the micrometer or nanometer levels, making possible a wide variety of miniature devices such as transistors, optical sensors and microelectromechanical systems (MEMS). However, man's knowledge of micro- and nanoscale heat flow is rudimentary at best. Now, a research team at the University of Illinois at Urbana-Champaign (UIUC) has developed a novel system for examining and measuring nanoscale thermal conductance at the interface between two materials. With further refinement, the scientists believe their advance may one day provide data for applications such as harvesting electricity from waste heat, better cooling of microelectronic devices and "heat-seeking" targeting of disease cells by hyperthermal (above normal body temperature) therapeutics.

Scientists use molecular layers to study nanoscale heat transfer

College Park, MD | Posted on October 28th, 2012

The team's findings will be presented by Mark Losego, formerly a post-doctoral fellow at UIUC and now a research assistant professor in chemical and biomolecular engineering at North Carolina State University, during the AVS 59th International Symposium and Exhibition, held Oct. 28-Nov. 2, 2012, in Tampa, Fla.

At the nanoscale, thermal properties are the result of vibrations between neighboring atoms. Bonds between atoms carry these vibrations similar to an oscillating spring. The UIUC team developed a technique for studying the effects of these bonds on heat transport across an interface between two different materials. "We wanted a system where we could observe, analyze and quantify thermal flow across an interface with atomic-level precision," Losego says.

The system starts with a substrate base of quartz crystal, upon which the researchers place molecular chains that are 12 carbon atoms long. At the base of each chain is a chemical "cap" that covalently bonds to quartz. The attraction of these caps to the substrate spontaneously aligns all of the carbon chains into an ordered array of molecules known as a self-assembled monolayer (SAM). At the opposite end of each carbon chain is a different kind of cap, either a thiol (sulfur and hydrogen) group that bonds strongly to metals or a methyl group (carbon and hydrogen) that bonds weakly.

"We then make use of a viscoelastic silicone stamp to 'transfer print' gold layers onto the SAM surface," Losego explains. "This process is similar to transferring a decal onto a T-shirt where the gold film is the 'decal' attached to the silicone stamp 'backing'. When we slowly peel away the silicone, we leave the gold layer on top of the SAM."

It is at the interface between the gold film and the SAM, Losego says, where nanoscale heat flow is characterized. "Changing the chemical groups that are in contact with the gold layer allows us to see how different bonds affect heat transfer," he adds.

Combined with an ultrafast laser technique capable of monitoring temperature decay (or heat loss) with picosecond (trillionth of a second) resolution, the UIUC researchers are able to use their experimental system to evaluate heat flow at the atomic scale. "We heat the gold layer attached to the monolayer and can monitor temperature decay with time," Losego explains. "Concurrently, we observe oscillations in the gold film that indicate the strength of the bonds at the gold-SAM junction. Using these measurements we are able to independently verify that strong bonds [fast-decaying oscillations] have rapid heat transfer while weak bonds [slowly decaying oscillations] have slower heat transfer."

The researchers plan to refine their nanoscale thermal measurement system and develop theoretical calculations to better interpret the data it produces.

MORE INFORMATION ABOUT THE AVS 59th INTERNATIONAL SYMPOSIUM & EXHIBITION

The Tampa Convention Center is located along the Riverwalk in the heart of downtown Tampa at 333 S. Franklin St., Tampa, Florida, 33602.

ABOUT AVS

Founded in 1953, AVS is a not-for-profit professional society that promotes communication between academia, government laboratories, and industry for the purpose of sharing research and development findings over a broad range of technologically relevant topics. Its symposia and journals provide an important forum for the dissemination of information in many areas of science and technology, enabling a critical gateway for the rapid insertion of scientific breakthroughs into manufacturing realities.

####

For more information, please click here

Contacts:
Catherine Meyers
301-209-3088

Copyright © American Institute of Physics (AIP)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Main meeting website:

Technical Program:

Housing and Travel Information:

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Physics

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Events/Classes

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project