Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > More certainty on uncertainty's quantum mechanical role: Researchers present findings at Frontiers in Optics 2012 that observation need not disturb systems as much as once thought, severing the act of measurement from the Heisenberg Uncertainty Principle

A general method for measuring the precision and disturbance of any system. The system is weakly measured before the measurement apparatus and then strongly measured afterwards.

Credit: Lee Rozema, University of Toronto
A general method for measuring the precision and disturbance of any system. The system is weakly measured before the measurement apparatus and then strongly measured afterwards.

Credit: Lee Rozema, University of Toronto

Abstract:
Scientists who study the ultra-small world of atoms know it is impossible to make certain simultaneous measurements, for example finding out both the location and momentum of an electron, with an arbitrarily high level of precision. Because measurements disturb the system, increased certainty in the first measurement leads to increased uncertainty in the second. The mathematics of this unintuitive concept - a hallmark of quantum mechanics - were first formulated by the famous physicist Werner Heisenberg at the beginning of the 20th century and became known as the Heisenberg Uncertainty Principle. Heisenberg and other scientists later generalized the equations to capture an intrinsic uncertainty in the properties of quantum systems, regardless of measurements, but the uncertainty principle is sometimes still loosely applied to Heisenberg's original measurement-disturbance relationship. Now researchers from the University of Toronto have gathered the most direct experimental evidence that Heisenberg's original formulation is wrong. The results were published online in the journal Physical Review Letters last month and the researchers will present their findings for the first time at the Optical Society's (OSA) Annual Meeting, Frontiers in Optics (FiO), taking place in Rochester, N.Y. Oct. 14 -18.

More certainty on uncertainty's quantum mechanical role: Researchers present findings at Frontiers in Optics 2012 that observation need not disturb systems as much as once thought, severing the act of measurement from the Heisenberg Uncertainty Principle

Washington, DC | Posted on October 4th, 2012

The Toronto team set up an apparatus to measure the polarization of a pair of entangled photons. The different polarization states of a photon, like the location and momentum of an electron, are what are called complementary physical properties, meaning they are subject to the generalized Heisenberg uncertainty relationship. The researchers' main goal was to quantify how much the act of measuring the polarization disturbed the photons, which they did by observing the light particles both before and after the measurement. However, if the "before shot" disturbed the system, the "after shot" would be tainted.

The researchers found a way around this quantum mechanical Catch-22 by using techniques from quantum measurement theory to sneak non-disruptive peeks of the photons before their polarization was measured. "If you interact very weakly with your quantum particle, you won't disturb it very much," explained Lee Rozema, a Ph.D. candidate in quantum optics research at the University of Toronto, and lead author of the study. Weak interactions, however, can be like grainy photographs: they yield very little information about the particle. "If you take just a single measurement, there will be a lot of noise in that measurement," said Rozema. "But if you repeat the measurement many, many times, you can build up statistics and can look at the average."

By comparing thousands of "before" and "after" views of the photons, the researchers revealed that their precise measurements disturbed the system much less than predicted by the original Heisenberg formula. The team's results provide the first direct experimental evidence that a new measurement-disturbance relationship, mathematically computed by physicist Masanao Ozawa, at Nagoya University in Japan, in 2003, is more accurate.

"Precision quantum measurement is becoming a very important topic, especially in fields like quantum cryptography where we rely on the fact that measurement disturbs the system in order to transmit information securely," said Rozema. "In essence, our experiment shows that we are able to make more precise measurements and give less disturbance than we had previously thought."

Presentation FW4J.4, "Direct Violation of Heisenberg's Precision Limit by Weak Measurements," takes place Wednesday, Oct. 17 at 2:30 p.m. EDT at the Rochester Riverside Convention Center in Rochester, N.Y.

PRESS REGISTRATION: A press room for credentialed press and analysts will be located in the Rochester Riverside Convention Center, Sunday through Thursday, Oct. 14-18. Those interested in obtaining a press badge for FiO should contact OSA's Angela Stark at 202.416.1443 or .

####

About Optical Society of America
Uniting more than 180,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

About the Meeting

Frontiers in Optics (FiO) 2012 is the Optical Society's (OSA) 96th Annual Meeting and is being held together with Laser Science XXVIII, the annual meeting of the American Physical Society (APS) Division of Laser Science (DLS). The two meetings unite the OSA and APS communities for five days of quality, cutting-edge presentations, fascinating invited speakers and a variety of special events spanning a broad range of topics in optics and photonics—the science of light—across the disciplines of physics, biology and chemistry. FiO 2012 will also offer a number of Short Courses designed to increase participants' knowledge of a specific subject in the optical sciences while offering the experience of insightful teachers. An exhibit floor featuring leading optics companies will further enhance the meeting. More information at www.FrontiersinOptics.org.

For more information, please click here

Contacts:
Angela Stark

202-416-1443

Copyright © Optical Society of America

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Physics

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Photonics/Optics/Lasers

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Quantum nanoscience

What is "time" for quantum particles? Publication by TU Darmstadt researchers in renowned journal "Science Advances" May 17th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project