Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Aculon Announces New Sapphire Lens Repellency Treatment

Abstract:
Aculon, Inc., a leading nanotechnology enabled performance coatings company, today announced that its highly successful optical lens treatment is now available for the treatment of sapphire substrates.

Aculon Announces New Sapphire Lens Repellency Treatment

San Diego, CA | Posted on September 22nd, 2012

Aculon's treatment for sapphire substrates will allow for the application of a highly durable repellent hydrophobic and oleophobic treatment on these substrates. This technology is only 2-4 nm thick, optically clear, and is easily applied at Aculon's facility.

"The introduction of an optically clear durable repellent treatment for sapphire lenses is very valuable for industries using sapphire substrates," says Edward Hughes, CEO of Aculon. "We took our optical treatments and modified it to work for sapphire crystals and lenses. After a year of testing in oil and other industrial applications we are now ready to make this broadly available. The treatment increases the ease of cleaning, decreases the required cleaning frequency, and thereby reducing equipment downtime."

Sapphire substrates commonly used for watch crystals and optical viewports in the oil, industrial, aerospace, and military markets can all be easily treated with Aculon's sapphire treatment.

####

About Aculon Inc
Founded in 2004, Aculon specializes in inventing and commercializing unique molecular-scale surface and interfacial coatings leveraging nanotechnology discoveries made at Princeton University. The Company's breakthrough technology outperforms all known alternatives in characteristics such as repellency, particle treatments, and adhesion.

Key benefits of Aculon technology include:
• Repellency – Treat numerous surfaces to repel water, oil, solvents, and most all liquids.
• Particle Treatment – Functionalize nanoparticles to improve many characteristics such as hydrophobicity, oleophobicity, and adhesion.
• Adhesion – Boost the adhesion of challenging surfaces with Aculon’s adhesion promoting treatments.
• Value - Molecular scale modification can transform surfaces and interfaces to provide unique performance, simpler processes, and favorable economics.

Aculon's team brings together seasoned executives from the specialty chemicals industry, professional investors experienced in early-stage technology companies, key scientists from Princeton University, and proven business development professionals.

For more information, please click here

Contacts:
Mario Gattuso
Phone: 858-350-9474

Copyright © Aculon Inc

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Photonics/Optics/Lasers

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project