Home > Press > Iranian Researchers Produce Ethanol Nanosensors
Abstract:
Iranian researchers from Tehran University and Shahid Rajayee Teachers Training University produced nanosensors to identify ethanol gas by synthesizing zinc oxide-tin oxide nanostructures.
Zinc oxide-tin oxide nanostructure (ZnO-SnO2) has specific characteristics due to its vast conductivity change domain, and its sensitivity to the presence of gas. By identifying zinc oxide-tin oxide nanostructure and using nanotechnology, the researchers produced nanosensors that are sensitive to the presence of ethanol in environment and have high selectivity in regard with this gas.
The mentioned nanostructure had so far been produced through different and almost more difficult methods. Therefore and after carrying out studies on the synthesis of this nanostructure, the researchers succeeded in the production of ZnO-SnO2 nanostructure through the simpler method of deposition.
By carrying out experiments on the synthesized nanosensor, the researchers obtained desirable results. The results showed that by adding Zn2+ to the structure of SnO2, the SnO2's structure, morphology, and sensor behavior are improved. Therefore, the synthesized nanosensor has a higher sensitivity and selectivity to ethanol than to carbon monoxide and methanol in the environment.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
Chemistry
Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Sensors
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||