Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Building Artificial Brains: Nanotechology to Mimic Synapses

Abstract:
The synapse is the basic unit of neural communication. Representing a synapse by a single device is a challenging task that lies at the intersection of neuroscience and artificial intelligence. The structure of a biological synapse is very complex, with hundreds of proteins and other chemicals interacting in a complicated manner; nevertheless, there is always a gap (synaptic cleft) across which a signal is transmitted

Building Artificial Brains: Nanotechology to Mimic Synapses

Germany | Posted on June 8th, 2012

Now, new research seeks to reproduce a synapse using a single solid-state electrochemical nanodevice called a Cu2S-gap type atomic switch. In this device, there is a gap which is bridged by a copper filament under a voltage pulse stimulation. This causes a change in conductance which is time-dependent. The change in conductance can be considered to be analogous to the change in strength of a biological synaptic connection.

Therefore, this device can be considered to mimic the major features of the human memory; namely, the sensory, short-term, and long-term memories. In addition, the fact that it responses to the presence of air and the change in temperature enables it to be distinguished as an advanced synthetic synapse with the potential to perceive environment, just like the human brain.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Brain-Computer Interfaces

Developing nanoprobes to detect neurotransmitters in the brain: Researchers synthesize fluorescent molecularly imprinted polymer nanoparticles to sense small neurotransmitter molecules and understand how they govern brain activity March 3rd, 2023

Taking salt out of the water equation October 7th, 2022

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Discoveries

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Announcements

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project