Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > TMC13 Deposition Rate Controller for Thin Film Applications

TMC13 Deposition Rate Controller
TMC13 Deposition Rate Controller

Abstract:
The TMC13 Deposition Rate Controller from Henniker Scientific is a versatile, multi-channel device that has been designed for repeatebale, reliable and accurate control of film thickness and rate in vacuum based thin film deposition processes.

TMC13 Deposition Rate Controller for Thin Film Applications

Warrington, UK | Posted on May 15th, 2012

The feature-rich touch-screen interface can be easily customised to suit a particular operator preference and can be operated in both automatic and manual modes, providing a direct display and control of film thickness, deposition rate and frequency value for up to 6 independent deposition sources.

The device also includes shutter relays for each channel, two analogue inputs for connection of pressure gauges, and two re-transmission analogue outputs as standard, as well as an extensive and fully editable materials library.

Where control features are not required, the quartz crystal balance can be interfaced directly with a PC via the compact, low cost, single channel TM13 interface which provides a highly stable and repeatable frequency to rate/ thickness conversion for all industry standard 6MHz quartz crystals.

####

For more information, please click here

Contacts:
Gill Bolton
Henniker Scientific Ltd.
Cavendish House
Birchwood Park
Warrington WA3 6BU
England
Tel: +44 (0) 1925 811 254
Fax: +44 (0) 1925 800 035

Copyright © Henniker Scientific Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Tools

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Hitachi’s holography electron microscope attains unprecedented resolution:Image acquisition and defocusing correction techniques enable observations of atomic-scale magnetic fields at never-before-seen resolution July 5th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project