Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Floor van de Pavert: seeing the (almost) invisible with nano-wires quality - part 2

Abstract:
How three young entrepreneurs have transformed a brilliant invention into a commercial product - by SERGIO PISTOI

Floor van de Pavert: seeing the (almost) invisible with nano-wires quality - part 2

Brussels, Belgium | Posted on April 19th, 2012

The story began a few years ago, when two scientists from the University of Delft (see related story) developed a way to double the efficiency of currently available single photons detectors. These devices, which are used in research and in the industry, can detect infinitesimal amounts of light, down to a single photon. In late 2011, the researchers teamed up with Floor van de Pavert, an expert in technological transfer with a background in physics. Together they founded Single Quantum, a start-up company that commercializes the invention. We talked with van de Pavert, the company's CEO, to know more about their business approach.

Ms. van de Pavert, how did you move from the laboratory results to a commercial endeavour?

The company spun off from the research work of Sander Dorenbos and Val Zwiller (currently CTO and Scientific Adviser of Single Quantum - editor's note) at the University of Delft. After they developed their single photon detector, Sander and Val gave it to other laboratories. At one point, the device became so popular that they were getting requests from scientists all over the world. This is when they realize it could become a commercial product, and I came on board. The device was an improvement of an existing detector, so we had to obtain a licence with the owners of the original patent. The coaching we got from the Pronano project was very helpful to establish the company and to negotiate the licence deal.

What is your business model?

Since we have a functioning product, we decided to commercialize it directly. We are already selling our device successfully, which provides us with a cash flow since the beginning. This is certainly a very fortunate situation compared to most start-ups.

How are you planning to grow in the near future?

At this stage it is crucial to establish a professional company structure. We also want to identify new markets and new applications and to look for commercial products in which our technology could be embedded.

In your experience, what is the hardest part of the job when establishing a start-up?

I believe the most difficult part is to make a good team and to have people with complementary expertise. Having a physics background was helpful for me to understand the technology, but when moving from the laboratory to the market, you also need different sets of non-technical skills like communication or networking capabilities. We were lucky to be a good, synergetic team. It's just a pleasure working together.

Sergio Pistoi - youris.com

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Physics

New method cracked for high-capacity, secure quantum communication July 5th, 2024

What is "time" for quantum particles? Publication by TU Darmstadt researchers in renowned journal "Science Advances" May 17th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Superconductivity

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Chip Technology

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Quantum Computing

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Tools

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Hitachi’s holography electron microscope attains unprecedented resolution:Image acquisition and defocusing correction techniques enable observations of atomic-scale magnetic fields at never-before-seen resolution July 5th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Photonics/Optics/Lasers

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project