Home > Press > Nanotechnology Used to Measure Low Concentrations of Cyanide Ion in Water
Abstract:
Iranian researchers successfully measured low concentrations of the toxic and harmful cyanide ion in aqueous environments by using nanotechnology.
"Synthetic silver nanoparticles were used in the research as the colorimetric sensor in order to measure low concentrations of cyanide ion in aqueous environments," Salahoddin Hajizadeh, MSc in analytical chemistry from Urmia University, told the INIC.
According to him, the purpose of this research was to present a simple, cost-effective, selective, and sensitive method for the measurement of low concentrations of the toxic and dangerous cyanide ion in water by using nanotechnology.
"The pollution of water reservoirs with cyanide compounds is among the important environmental challenges. Most of the reported colorimetric methods to measure cyanide are based on organic colors, so they are applicable in organic environments. Therefore, it is necessary to present a simple and cost-effective method to measure cyanide in aqueous solutions," he added.
Elaborating on the method of the research, Hajizadeh said, "Colloidal solution of silver nanoparticles has a bright yellowish color. Therefore, the formation and stabilization of silver nanoparticle solution can be confirmed by using ultraviolet-visible light spectroscopy analysis. The synthesized silver nanoparticle solution is stable for months in the dark at the room temperature, and its SPR adsorption band of the solution does not change. However, when the aqueous cyanide solution is added to silver nanoparticle solution, its color becomes pale. The solution becomes colorless at the presence of extra amount of cyanide."
"The increase in the intensity of SPR adsorption band is in proportion with the concentration of cyanide, and there is a linear relation between the concentration of cyanide and the reduction in the adsorption of silver nanoparticle solution."
Hajizadeh explained about the advantage of the presented method, and added, "This method can easily be used with naked eye, or by using a simple spectrophotometer device in order to detect cyanide in water."
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Tools
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Water
Taking salt out of the water equation October 7th, 2022
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||