Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Future development of smaller and more powerful electronics requires the understanding of 'quantum jamming' physics

Quantum particles moving in one dimension behave collectively like cars in a traffic jam. One moves if all the others agree to do so.
Quantum particles moving in one dimension behave collectively like cars in a traffic jam. One moves if all the others agree to do so.

Abstract:
Miguel A. Cazalilla, a scientist at the CFM (a joint CSIC-UPV/EHU center) and the Donostia International Physics Center (DIPC), together with other four colleagues from various institutions in Europe and the United States, was recently invited to write a review article that has been just published in the prestigious journal Reviews of Modern Physics of the American Physical Society, where only leading scientists in their field of physics are invited to contribute. The article, "One dimensional Bosons: From Condensed Matter to Ultracold Atoms", offers a glimpse into the recent progress in the field of one dimensional quantum many-particle physics.

Future development of smaller and more powerful electronics requires the understanding of 'quantum jamming' physics

San Sebastian, Spain | Posted on January 9th, 2012

Understanding the properties of matter confined in narrow channels is becoming more and more necessary as the size of elements of microchips is pushed towards the limits of miniaturization by the electronics industry. In the future, the properties of electronic devices, as well as the wires connecting them, will be strongly affected by quantum effects. The field of one dimensional quantum many-particle physics has recently moved from speculative theory to experimental evidence thanks to our capabilities to manipulate matter at the nanoscale.

When matter is forced to move essentially in a line, new kinds of collective phenomena emerge. For quantum particles, it is like being trapped in a traffic jam or queuing for movie tickets, in order to move (forward or backward) everyone must agree to do so. Thus, quantum particles like bosons, also stand in line!

Dr. Cazalilla's approach to the subject is based mainly on quantum field theory, a powerful tool that has been very successful in describing the world at the highest energy scales (those found in particle accelerators such as LHC), but also the properties of the many possible phases of matter forced to move in reduced dimensions.

Reviews of Modern Physics of the American Physical Society journal is ranked fourth in the Journal Citation Report 2010 Science Edition with an impact factor 1.5 times higher than the well known journal Nature. Only leading scientists in their fields are invited to contribute to this journal, and thus, the publication of this review it is a recognition of the excellence of Dr. Cazalilla's work.

For those who are interested in the topic, a summary in layman's language can be found in additional information.

####

For more information, please click here

Contacts:
Nora Gonzalez
DIPC

(+34) 943 01 5624

Aitziber Lasa

34-943-363-040

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Internet reference:

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Physics

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Chip Technology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchersí approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Quantum nanoscience

What is "time" for quantum particles? Publication by TU Darmstadt researchers in renowned journal "Science Advances" May 17th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project