Home > News > Focus: Nanotube Bundles Show Promise for Solar Cells: Bundles of nearly identical carbon nanotubes have properties that are well-suited for making electricity from light
December 16th, 2011
Focus: Nanotube Bundles Show Promise for Solar Cells: Bundles of nearly identical carbon nanotubes have properties that are well-suited for making electricity from light
Abstract:
olar electricity generation may someday be cheaper with so-called thin-film photovoltaics than with conventional materials, but the thin-film systems are currently much less efficient. Researchers publishing in Physical Review Letters have now shown that bundles of carbon nanotubes—cylinders of pure carbon—have the potential to dramatically increase that efficiency. Using high-speed spectroscopy, they found that the bundles can perform the two main required functions—generating charged-particle pairs and allowing the pairs to separate. Today's thin-film solar cells, which are layered structures, can't perform both functions in a single material, which leads to reduced efficiency. The team is hopeful that their work will lead to practical, nanotube-based, thin-film solar cells with high efficien
Source:
physics.aps.org
| Related Links |
| Related News Press |
Thin films
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Laboratories
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Govt.-Legislation/Regulation/Funding/Policy
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Solar/Photovoltaic
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||