Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > University of Twente provides alternative to optical semiconductor amplifiers: Potential optical amplification of more than one hundredfold

Electron microscope image of a waveguide structure, superimposed with a measured intensity profile of the light trapped within it.
Electron microscope image of a waveguide structure, superimposed with a measured intensity profile of the light trapped within it.

Abstract:
Researchers at the University of Twente's MESA+ research institute have developed a material capable of optical amplifications that are comparable to those achieved by the best, currently available semiconductor optical amplifiers. The researchers expect that this material will accelerate data communication and, ultimately, provide an alternative to short distance data communication (at the μm-cm scale). On 16 November, University of Twente researcher Dimitri Geskus will defend his PhD thesis based on this research, which he carried out at the Faculty of Electrical Engineering, Mathematics and Computer Science.

University of Twente provides alternative to optical semiconductor amplifiers: Potential optical amplification of more than one hundredfold

Enschede, The Netherlands | Posted on November 18th, 2011

The increasingly exacting requirements being imposed on data communication are boosting demand for high-speed optical amplifiers. Current optical amplifiers suffer from the drawback that their speed is limited. Researchers at the university have now developed a material capable of optical amplifications which match those achieved using the best, currently available semiconductor optical amplifiers, but at potentially higher data communication rates. This material consists of thin crystalline layers whose optical properties were specially designed for the optical circuits found on chips. The researchers can fine-tune the properties of these thin crystalline layers by changing their composition. Using a clever trick, they were able to embed much higher concentrations of optically active Ytterbium ions (Ytterbium is a rare-earth element) in the crystal. In this way, they have boosted the optical amplification of currently available rare-earth-doped materials by more than one hundredfold. This will ultimately pave the way for faster and cheaper optical data communication.

PhD research
Dimitri Geskus carried out his PhD research at the MESA+ research institute's Integrated Optical Microsystems department. His work was supervised by Prof. Markus Pollnau. The research was partially funded by Prof. Pollnau's personal VICI grant from the Dutch Organization for Scientific Research (NWO).
Details of this work, drawn from Mr Geskus' dissertation, were recently published in the leading scientific journal Advanced Materials.

####

For more information, please click here

Contacts:
Science Information Officer
Joost Bruysters
(+31-(0)53-4892773/+31-(0)6 1048 8228)

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Photonics/Optics/Lasers

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project