Home > Press > Works Well on Paper: The Graphene Muscle
![]() |
Abstract:
It seems that there is a new application for graphene around every corner. In their new paper, Chen et al. show how magnetic graphene paper can act like an artificial muscle.
They fabricated electrochemical actuators based on flexible graphene paper. Electromechanical actuators can convert electrical energy into mechanical energy through stretching or contraction, behaving like artificial muscles. Such materials have a myriad of potential applications in healthcare and nanotechnology.
The graphene-paper actuators lengthen in response to applied voltage, due to changes in the carbon-carbon bond length. The team managed to increase the response by magnetizing the paper using Fe3O4 nanoparticles. The authors believe that the nanoparticles act as pillars between the sheets, increasing the surface area available for electrochemical actuation.
By experimenting with the composition of such constructs, the degree of response can hopefully be increased, realizing the potential of graphene in electrochemical actuation.
####
For more information, please click here
Copyright © Wiley-VCH Materials Science Journals
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
Y. Chen et al., Adv. Funct. Mater. ; DOI: 10.1002/adfm.201101072
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||