Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Imec launches new research program on high-bandwidth optical I/O

Abstract:
Imec announces the launch of a new industrial affiliation program on high-bandwidth optical input/output (I/O). The primary objective of the new program, which is part of imec's research platform on deep-submicron CMOS scaling, is to explore the use of optical solutions for realizing high-bandwidth I/O between CMOS chips.

Imec launches new research program on high-bandwidth optical I/O

Leuven, Belgium | Posted on January 25th, 2011

According to the ITRS roadmap, the aggregate data rate for off-chip communication is expected to exceed 100Tb/s by 2020. However, no known manufacturable solution for achieving such bandwidth density is currently available. Silicon photonics has been identified as a prime candidate to deliver a technology solution for enabling cost-effective short-range optical links. The main benefits of silicon-based optical interconnects are their high speed, compact footprint, low power consumption and low cost, which enable the realization of a scalable interconnect solution. Moreover, the compatibility with existing CMOS processing infrastructure as well as the possibility of co-integration with CMOS circuits are additional important assets of the silicon photonics technology.

During the past ten years, imec and its associated lab INTEC at Ghent University have proven a track record in demonstrating the outstanding performance of silicon-based optical devices for high-speed data transmission, using silicon-on-insulator (SOI) substrates. Imec's new optical I/O program builds on this extensive expertise and aims at further developing a silicon-photonics solution for addressing the upcoming scaling challenges in interconnecting CMOS chips, in close collaboration with imec's industrial partners. The program includes a two-fold path-finding effort. First, the complete electrical-to-optical-to-electrical (E-O-E) transmission path will be modeled for various technological implementations and benchmarked against the requirements for various applications, as well as against existing solutions. This benchmarking effort will focus on optimizing bandwidth density, power consumption, thermal robustness and cost at the system level. Second, demonstrators of the full optical link will be realized in silicon, including all required components such as optical modulators, germanium-based photodetectors, and thermally robust optical multiplexers, as well as their CMOS-based driving and receiving circuits.

The optical I/O IIAP is part of imec's core program in which imec works together with leading IC companies on future CMOS technologies. In this framework, imec's core partners will actively participate in the IIAP at imec in Leuven (Belgium). Such on-site participation enables partner companies to have early access to new technology insights, processes and equipment.

####

About imec
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,750 people includes over 550 industrial residents and guest researchers. In 2009, imec's revenue (P&L) was 275 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.).

For more information, please click here

Contacts:
Hanne Degans
External Communications Officer
T: +32 16 28 17 69
Mobile: +32 486 065 175


Barbara Kalkis
Maestro Marketing & PR
T :+1 408 996 9975
M : +1 408 529 4210

Copyright © imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project