Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Push-Button Logic on the Nanoscale

Abstract:
Circuits that can perform logic operations at the push of a button are a dime-a-dozen these days, but a breakthrough by researchers in the USA has meant they can be smaller and simpler than ever before.

Push-Button Logic on the Nanoscale

Atlanta, GA | Posted on August 5th, 2010

Using a single material as both the button and the circuit for the first time, scientists at the Georgia Institute of Technology have created tiny logic circuits that can be used as the basis of nanometer-scale robotics and processors.

Professor Zhong Lin (ZL) Wang, who leads the research, explains how the peculiar properties of zinc oxide have made this work possible. "Zinc oxide is unique because of its coupled piezoelectric and semiconductor properties." The piezoelectric effect occurs when a strain on a material, caused by pushing on it for example, reversibly changes the crystal structure in one direction enough to make an electric field. The mechanical motion induces a voltage from one side of the material to the other. Semiconductors have the ability to conduct electricity, or not, depending on some external factor. In zinc oxide, these two characteristics combine and the transport of electric current is influenced by the piezoelectric effect, meaning that changes in strain result in changes in the material's ability to conduct electricity. This is what is known as the piezotronic effect.

By having the zinc oxide in the form of a nanowire, (diameter 300 nanometers; length 400 micrometers), and bonded with metals at each end, Wang has effectively produced a tiny transistor, which is gated (open or shut, with electricity either flowing or not) by the strain applied to the nanowire.

In results published in Advanced Materials this week, Wang and his colleagues show how by combining an appropriate number of these transistors in various arrangements, systems can be made that can process the basic logic functions of NAND, NOR, and XOR, as well as act as multiplexers (MUX) and demultiplexors (DEMUX).

Until now, logic processors have relied on the use of CMOS technology, using two Complementary components, a Metal Oxide and a Semiconductor, such as silicon. In CMOS processors, an electric signal is required to operate the gate. If a mechanical stimulus is required, yet a further component must be added to the system. By contrast, Wang claims his work represents a "brand new approach toward logic operation that performs mechanic-electrical coupled and controlled actions in one structure unit using a single material (which is zinc oxide)…This is the very first demonstration of mechanical action-induced electronic operation with the introduction of a new driving mechanism in comparison to existing silicon-based logic operations. This is also the first demonstration of its kind using nanowires."

Working in the nanoscale presents its own challenges, and the most difficult parts of this work were synthesizing high-quality nanowires and manipulating them on the substrate so they would work in a synchronized way. But Wang is now confident they have achieved a good control over the process, and the results testify that this is the case.

The logic circuits are not as fast as those currently in use and based on CMOS, but Wang does not see this as a problem. In fact, he sees the applications of the two technologies as being complementary. "The strain-gated logic devices are designed to interface with the ambient environment, which is associated with low-frequency mechanical actions, and the aim and targeting applications are different from those of conventional silicon devices which aim at speed." Envisaged applications include nanorobotics, transducers, micromachines, human-computer interfacing, and microfluidics (where tiny channels carry various liquids, usually to be mixed for reaction tightly controlled ways).

The group intends to join the new strain-gated transducers to sensors and energy-drawing components they have previously prepared also from zinc oxide nanowires to make "self-sustainable, all-nanowire-based, multifunctional self-powered autonomous intelligent nanoscale systems." It seems we won't even need to push a button anymore.

Prof. Wang is a member of the Advisory Board of Advanced Functional Materials, published by Wiley-Blackwell, who also publish Advanced Materials.

W. Z. Wu, Y. G. Wei, and Z. L. Wang, "Strain-Gated Piezotronic Logic Nanodevices", Advanced Materials 2010, DOI: 10.1002/adma.201001925

This paper is available online on doi.wiley.com/10.1002/adma.201001925

####

For more information, please click here

Contacts:
Prof. Zhong Lin Wang
School of Materials Science and Engineering
Georgia Institute of Technology
Atlanta, GA 30332 (USA)
www.nanoscience.gatech.edu/zlwang

Copyright © Materials Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project