Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rensselaer Researchers Secure $1 Million Grant To Develop Oil Exploration Game-Changer

Nikhil Koratkar
Nikhil Koratkar

Abstract:
Nanoengineered Coating Uses Naturally Occurring Water Deep in Earth to Power Underground Oil and Gas Sensors

Rensselaer Researchers Secure $1 Million Grant To Develop Oil Exploration Game-Changer

Troy, NY | Posted on March 27th, 2010

Rensselaer Polytechnic Institute Professor Nikhil Koratkar is leading a $1 million study to develop new coatings for nanosensors that could lead to more accurate and efficient oil exploration.

Koratkar and colleagues are investigating how the flow of water, steam, or certain gasses over surfaces coated with carbon nanotubes or graphene can generate small amounts of electricity. The researchers seek to explain this phenomenon — which has been observed but is not yet fully understood — and use their findings to create tiny self-powered devices that travel through naturally occurring cracks deep in the earth and can help uncover hidden pockets of oil and natural gas.

"Water and gases are naturally moving deep within crevices in the earth, so we are investigating the best way to harvest that energy and put it to use," said Koratkar, professor in the Department of Mechanical, Aerospace, and Nuclear Engineering in Rensselaer's School of Engineering. "It has been shown that the flow of water and gases over certain nanomaterials creates an electric charge, but we're still not quite sure why. Once we fully understand the reason, we should be able to optimize the process and create a practical, useful device."

The three-year study, funded by the Advanced Energy Consortium, is titled "Nanofluidic Power Generation Using One-Dimensional (Carbon Nanotube) and Two-Dimensional (Graphene) Nanomaterials."

Hydrocarbon exploration is an expensive process that involves drilling deep down in the earth to detect the presence of oil or natural gas. Koratkar said oil and gas companies would like to augment this process by sending out large numbers of nanoscale sensors into new and existing drill wells. These sensors would travel laterally through the earth, carried by the naturally occurring water and gas flowing through the network of cracks that exists underneath the earth's surface. Oil companies would no longer be limited to vertical exploration, and the data collected from the sensors would arm these firms with more information for deciding the best locations to drill.

A key challenge to realizing these nanosensors, Koratkar said, is that they are autonomous and therefore need to be self-powered. Recent studies show that the motion of water over carbon nanotubes creates small amounts of electricity—but far less than needed to power the sensors. Koratkar's team is investigating how to optimize this process and exploit it to generate electricity on the order of milliwatts. In addition to coating a nanosensor with carbon nanotubes, the team will also look at using coatings made from graphene, a single-atom-thick sheet of carbon atoms arranged like a nanoscale chain-link fence.

Conventional thinking is that free electrons on the surface of carbon nanotubes and graphene can interact with ions in the flowing water. The ions can drag the electrons in the flow direction, creating an electric current. It is curious, Koratkar said, that flowing steam over carbon nanotubes creates a voltage, even though steam does not contain ions—a mystery the new study plans to tackle. Additionally, his team will investigate how water flowing inside of carbon nanotubes, and inside of layered graphene, can be harnessed to create additional voltage.

"We don't fully understand everything about this process, but once we do, it should lead to exciting new possibilities for nanocoatings that can power sensors by harvesting energy from their environment," Koratkar said. "This should help the drilling companies locate and identify new pockets of oil and natural gas that have so far gone unnoticed."

Rensselaer will receive $700,000 of the grant, and $300,000 will go to researchers at Rice University. Koratkar's co-investigators are Yunfeng Shi, assistant professor in the Department of Materials Science and Engineering at Rensselaer; and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice.

####

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute is the nation’s oldest technological university. The university offers degrees from five schools: Engineering; Science; Architecture; Humanities, Arts, and Social Sciences; and the Lally School of Management & Technology; as well as an interdisciplinary degree in Information Technology.

Institute programs serve undergraduates, graduate students, and working professionals around the world. The Institute’s long-standing reputation drew students from 39 states in addition to Washington, D.C., Puerto Rico, and 13 foreign countries in the fall of 2009.

Rensselaer offers more than 145 programs at the bachelor’s, master’s, and doctoral levels. Students are encouraged to work in interdisciplinary programs that allow them to combine scholarly work from several departments or schools. The university provides rigorous, engaging, interactive learning environments and campus-wide opportunities for leadership, collaboration, and creativity.

For more information, please click here

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project