Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Asylum Research Announces Grant Awardees for its Band Excitation Technique

Abstract:
Asylum Research, a technology leader in scanning probe and atomic force microscopy (SPM/AFM), announced March 15, 2010 eight new grants for early adopters to explore the capabilities and applications of the unique new band excitation (BE) technique.

Asylum Research Announces Grant Awardees for its Band Excitation Technique

Santa Barbara, CA | Posted on March 16th, 2010

The R&D100 Award-winning BE method is a fast and sensitive technique that allows mapping of conservative interactions, nonlinearities, and energy dissipation of materials on the nanoscale, and shows great promise for understanding and mitigating energy losses in magnetic, electrical, and electromechanical processes and technologies.

Grants valued at up to $50,000 USD per grant have been awarded to:

> Matt Dawber, Stony Brook University, USA: "Accurate and Advanced Characterization of the Piezoelectric Figures of Merit for tailored Ferroelectric Superlattices"
> Alexei Gruverman, University of Nebraska, USA: "Band Excitation Scanning Probe Microscopy for Nanoscale Studies of Bio-organic Polymers"
> Brian Huey, University of Connecticut, USA: "Band Excitation Methods for Novel Investigations of Phase Change Materials and Fuel Cell Systems"
> Jiangyu Li, University of Washington, USA: "Band Excitation for Quantitative Scanning Probe Microscopy of Magnetoelastic Coupling in Galfenol"
> Lane Martin/Scott MacLaren, University of Illinois, Urbana-Champaign, USA: "Band Excitation Studies of Losses in Local Switching of Modern Ferroelectric and Multiferroic Thin Films"
> Gunter Moeller/George Papakonstantopoulos, Arkema Inc.: "Band Excitation AFM to Develop a Dynamic Mechanical Analysis Method for Polymers"
> Brian Rodriguez, University College of Dublin, Ireland: "Decoupling Elastic and Electromechanical Responses Using Band Excitation Scanning Probe Microscopy"
> Neil Thompson/Colin Grant/Nagatha Wijayathunga, University of Leeds, UK: "Band Excitation AFM of Collageneous Materials"

"We at Asylum Research, along with BE inventors Stephen Jesse and Sergei Kalinin at Oak Ridge National Laboratory (ORNL), are excited about the quality of the proposals submitted for our grant program. In particular, we are excited about the increase in application areas. BE was born to improve piezoresponse force microscopy, but has spread to very diverse areas from polymers, to biology and battery technology. We look forward to working closely with this excellent group of researchers to advance the BE technique and its applications," said Roger Proksch, Asylum Research President.

For more information on the Band Excitation technique and grants, visit:
www.asylumresearch.com/Grants/index.shtml

####

About Asylum Research
Asylum Research is the technology leader for scanning probe and atomic force microscopes (SPM/AFM) for both materials and bioscience applications. Founded in 1999, we are a company dedicated to innovative instrumentation for nanoscience and nanotechnology, with over 250 years combined AFM/SPM experience from our scientists, engineers and software developers. Our instruments are used for a variety of nanoscience applications in material science, physics, polymers, chemistry, biomaterials, and bioscience, including single molecule mechanical experiments on DNA, protein unfolding and polymer elasticity, as well as force measurements for biomaterials, chemical sensing, polymers, colloidal forces, adhesion, and more. Asylum’s product line offers imaging and measurement capabilities for a wide range of samples, including advanced techniques such as electrical characterization (CAFM, KFM, EFM), high voltage piezoresponse force microscopy (PFM), magnetic force microscopy (MFM) with our unique variable field module, quantitative nanoindenting, and a wide range of environmental accessories and application-ready modules.

For more information, please click here

Contacts:
Jennifer Jones

Asylum Research Corp.
940 Main Campus Drive, Suite 130
Raleigh, NC 27606
919-861-7420 office
919-861-7425 fax

Corporate Office:
6310 Hollister Ave
Santa Barbara, CA 93117
805-696-6466 office
888-472-2795 toll free

Copyright © Asylum Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project