Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > RUSNANO’S Supervisory Council Approves Financing for Project to Produce Bifacial Sensitive Monocrystalline Solar Modules

Abstract:
Realization of the project will bring Russian bifacial crystalline silicon solar modules to the world market.

RUSNANO’S Supervisory Council Approves Financing for Project to Produce Bifacial Sensitive Monocrystalline Solar Modules

Moscow | Posted on December 23rd, 2009

The new modules will have efficiency factors that surpass unifacial modules by 10% to 70%—10% when installation is done without additional construction; 70% when reflectors and tracking systems are built. These modules transform direct sunlight as well as light reflected from the natural surface or from specially built reflective elements. The module design is based on patented technology developed by Russian company Solar Wind and research and production company Kvark; the latter—a member-company of the Konti Group.

The main production line for the new modules will begin operating in 2012. Full design capacity should be reached in 2015, bringing production to around 120 MW per year. At that level, the project's annual sales are forecasted at 11.4 billion rubles. RUSNANO will invest about 2.5 billion rubles in the project.

The modules will be manufactured with silicon layers that are 20 nm to 80 nm thick, the ideal thickness for backside light sensitivity; the element itself will have transparency for infrared emission with wavelengths exceeding 1,100 nm. Production costs for these modules are competitive with those for unifacial units. To exploit the advantages of bifacial solar elements fully, the project plans to develop the technology further in the future. It will also reduce costs of production.

"What we are talking about is establishing Russia's first commercial production of bifacial solar modules. Its cost is entirely competitive with production of unifacial modules," RUSNANO Managing Director Konstantin Demetriou explained. "Today solar modules based on monocrystalline technology are the most in demand, thanks to their optimal ratio of cost and effectiveness; their share in the global market for photo energy is now around 80%. This project will diversify the corporation's portfolio in photo energy and make it possible for a competitive product with original Russian technology to enter the market."

The global market for solar modules is estimated at $19.9 billion in 2009. Specialists forecast growth to $30.4 billion in 2013 (average annual growth of 9%). If one considers market growth in terms of units, annual increases in installed capacity of solar modules are currently running at 29%; energy production will rise from 5.9 GW in 2009 to 18.5 GW in 2013.

Currently Europeans are the largest consumers of this form of energy. Therefore, the project will target sales of its products to Europe's solar power facilities in Italy, Spain, Greece, the Czech Republic, Bulgaria, Germany, and other countries. Kvark, the project's research and production partner, already holds sales contracts for a significant part of planned production capacity.

Solar Wind was founded in 1992 by Russian photovoltaic professionals with extensive experience in hi-tech and space programs. In the past, leading scientists and engineers of the company have developed unique technologies for space-based solar energy conversion systems. Some of those technologies were later used for terrestrial PV applications.

The company manufactures PV products with a proprietary process, using both standard and custom-made equipment and materials and accessories from Russian and foreign vendors.

####

About RUSNANO
The Russian Corporation of Nanotechnologies (RUSNANO) was established in 2007 by the Federal law ¹ 139-FZ to enable Government policy in the field of Nanotechnology.

To accomplish this task, RUSNANO co-invests in nanotechnology industry projects that have high commercial potential or social benefit. Early-stage investment by RUSNANO lowers the risk of its investment partners from the private sector.

For more information, please click here

Contacts:
Anna Fradkova, press-secretary of the international press office
P.: +7 495 5424444 add.1424
M.: +7 985 7299860

Copyright © RUSNANO

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Thin films

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project