Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cell biology on nanoporous UltraSM® membranes

Abstract:
Our pure silicon nanoporous UltraSM® membranes are not only useful for electron microscopy, but also cell biology. In many studies of cell biology, one is interested in understanding how two cell populations interact or affect one another.

Cell biology on nanoporous UltraSM® membranes

Rochester, NY | Posted on November 21st, 2009

This is important in studies of developmental biology, stem cell research as well as tissue and artifical organ engineering. Conventional materials used for co-culture studies consist of thick polymeric membranes that can trap low abundance short-distance signaling molecules that cells use to communicate. SiMPore's nanoporous nanometer-thick membrane is ideal for studying two cell populations that are physically separated, but closely enough to easily communicate. Physical separation is important in many cellular studies where one cell type is harvested and isolated after co-culture. The figure above shows this ideal co-culture environment.

To demonstrate the thinness and transparency of our UltraSM® membranes, we plated human white blood cells on the top and bottom surface of the membrane. In imaging the cells, we focused from beneath the membrane, to membrane height and then above the membrane. Unlike traditional co-culture membranes, the 15 nm thick UltraSM® membrane is invisible and does not degrade the image quality of the cells on the top.

SiMPore and our academic partners are currently using UltraSM® membranes in additional formats to study everything from cell-cell communication to investigating improved drug permeability assays and even developing tissue engineering platforms. If you would like to learn more or work with us towards developing a better co-culture platform, feel free to contact me:

####

About SiMPore
SiMPore is a nanotechnology materials company based in Rochester, NY developing and commercializing products for materials and life sciences communities.

For more information, please click here

Contacts:
SiMPore Inc.
150 Lucius Gordon Dr.
Suite 100
West Henrietta, NY 14586

888-249-2935

Copyright © SiMPore

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Products

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Tools

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Hitachi’s holography electron microscope attains unprecedented resolution:Image acquisition and defocusing correction techniques enable observations of atomic-scale magnetic fields at never-before-seen resolution July 5th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Nanobiotechnology

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project