Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > HP Enables Better, Faster Decision Making with Breakthrough Sensing Technology

Abstract:
Ultrasensitive inertial MEMS accelerometers benefit applications such as bridge, infrastructure and seismic monitoring

HP Enables Better, Faster Decision Making with Breakthrough Sensing Technology

Palo Alto, CA | Posted on November 5th, 2009

HP today announced new inertial sensing technology that enables the development of digital micro-electro-mechanical systems (MEMS) accelerometers that are up to 1,000 times more sensitive than high-volume products currently available.

A MEMS accelerometer is a sensor that can be used to measure vibration, shock or change in velocity. By deploying many of these detectors as part of a complete sensor network, HP will enable real-time data collection, management evaluation and analysis. This information empowers people to make better, faster decisions, and take subsequent action to improve safety, security and sustainability for a range of applications, such as bridge and infrastructure health monitoring, geophysical mapping, mine exploration and earthquake monitoring.

The new sensing technology represents a breakthrough in nano sensing research and uses the fluidic MEMS technology co-developed over the past 25 years by HP Labs - the company's central research arm - and the company's Imaging and Printing Group.

"HP is already the world's leading MEMS provider for fluidic devices, which are present in hundreds of millions of print cartridges each year, and we have proven capabilities for deep technology integration and commercialization into high-volume products," said Ken Abbott, director, Emerging Technology, Technology Development Organization, HP. "This, coupled with our position as a leading technology company, uniquely positions HP to deliver sensing solutions and services on a global scale."

The HP sensing technology enables a new class of ultrasensitive, low-power MEMS accelerometers. Up to 1,000 times more sensitive than high-volume, commercial products, sensors based on this technology can achieve noise density performance in the sub 100 nano-g per square root Hz range to enable dramatic improvements in data quality. The MEMS device can be customized with single or multiple axes per chip to meet individual system requirements.

The sensing technology is a key enabler of HP's vision for a new information ecosystem, the Central Nervous System for the Earth (CeNSE). Integrating the devices within a complete system that encompasses numerous sensor types, networks, storage, computation and software solutions enables a new level of awareness, revolutionizing communication between objects and people.

"With a trillion sensors embedded in the environment - all connected by computing systems, software and services - it will be possible to hear the heartbeat of the Earth, impacting human interaction with the globe as profoundly as the Internet has revolutionized communication," said Peter Hartwell, senior researcher, HP Labs.

This news release contains forward-looking statements that involve risks, uncertainties and assumptions. If such risks or uncertainties materialize or such assumptions prove incorrect, the results of HP and its consolidated subsidiaries could differ materially from those expressed or implied by such forward-looking statements and assumptions. All statements other than statements of historical fact are statements that could be deemed forward-looking statements, including but not limited to statements of the plans, strategies and objectives of management for future operations; any statements concerning expected development, performance or market share relating to products and services; any statements regarding anticipated operational and financial results; any statements of expectation or belief; and any statements of assumptions underlying any of the foregoing. Risks, uncertainties and assumptions include macroeconomic and geopolitical trends and events; the execution and performance of contracts by HP and its customers, suppliers and partners; the achievement of expected operational and financial results; and other risks that are described in HP's Quarterly Report on Form 10-Q for the fiscal quarter ended July 31, 2009 and HP's other filings with the Securities and Exchange Commission, including but not limited to HP's Annual Report on Form 10-K for the fiscal year ended October 31, 2008. HP assumes no obligation and does not intend to update these forward-looking statements.

© 2009 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

####

About HP
HP creates new possibilities for technology to have a meaningful impact on people, businesses and society. The world’s largest technology company, HP brings together a portfolio that spans printing, personal computing, software, services and IT infrastructure to solve customer problems. More information about HP (NYSE: HPQ) is available at hp.com.

For more information, please click here

Contacts:
Editorial contacts:

Jennifer Pershall, HP:

Elisa Greene, HP Labs:

Lisa Neitzel, Porter Novelli for HP:

Copyright © HP

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Microfluidics/Nanofluidics

Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project