Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Growing geodesic carbon nanodomes

Carbon atoms form dome structures on iridium substrates, en route to forming larger scale graphene sheets.  Image courtesy of Alan Stonebraker.
Carbon atoms form dome structures on iridium substrates, en route to forming larger scale graphene sheets. Image courtesy of Alan Stonebraker.

Abstract:
Tiny carbon islands bubble up at the center to form nanoscopic geodesic domes

Growing geodesic carbon nanodomes

College Park, MD | Posted on October 15th, 2009

Researchers analyzing the assembly of graphene (sheets of carbon only one atom thick) on a surface of iridium have found that the sheets grow by first forming tiny carbon domes. The discovery offers new insight into the growth of graphene layers and points the way to possible methods for assembling components of graphene-based computer circuits.

Paolo Lacovig, Monica Pozzo, Dario Alfè, Paolo Vilmercati, Alessandro Baraldi, and Silvano Lizzit at institutions in Italy, the UK and USA report their discovery in a paper appearing October 12 in the journal Physical Review Letters. The researchers' spectroscopic study suggests that graphene grows in the form of tiny islands built of concentric rings of carbon atoms. The islands are strongly bonded to the iridium surface at their perimeters, but are not bonded to the iridium at their centers, which causes them to bulge upward in the middle to form minuscule geodesic domes. By adjusting the conditions as the carbon is deposited on the iridium, the researchers could vary the size of the carbon domes from a few nanometers to hundreds of nanometers across.

Investigating the formation of graphene nanodomes helps physicists to understand and control the production of graphene sheets. In combination with methods for adjusting the conductivity of graphene and related materials, physicists hope to replace electronics made of silicon and metal with tiny, efficient carbon-based chips.

Jorge Sofo and Renee Diehl (Penn State University) highlight the graphene nanodome research in a Viewpoint in the October 12 issue of Physics (physics.aps.org).

Also in Physics: Clearing Up Electron Microscopy Aberrations, and Yoctosecond Flashes from Quark Gluon Plasmas

A Viewpoint by Robert Klie (University of Illinois at Chicago) describes an approach for reducing aberrations in electron microscopy, setting a new standard for low-energy imaging. And Abishek Agarwal (American Physical Society) offers a Synopsis of a model that suggests that quark-gluon plasmas produced in particle colliders could emit the briefest light bursts yet, potentially offering illumination for ultra-fast images of high speed events in atomic and molecular experiments

About APS Physics: APS Physics (physics.aps.org) publishes expert written commentaries and highlights of papers appearing in the journals of the American Physical Society.

####

About American Physical Society
The American Physical Society was founded on May 20, 1899, when 36 physicists gathered at Columbia University for that purpose. They proclaimed the mission of the new Society to be "to advance and diffuse the knowledge of physics", and in one way or another the APS has been at that task ever since. In the early years, virtually the sole activity of the APS was to hold scientific meetings, initially four per year. In 1913, the APS took over the operation of the Physical Review, which had been founded in 1893 at Cornell, and journal publication became its second major activity. Physical Review was followed by Reviews of Modern Physics in 1929, and by Physical Review Letters in 1958. Over the years, Physical Review has subdivided into five separate sections as the fields of physics have proliferated and the number of submissions grew.

In more recent years, the activities of the Society have broadened considerably. Stimulated by the increase in Federal funding in the period after the second World War, and even more by the increased public involvement of scientists in the nineteen sixties, APS is active in public and governmental affairs, and in the international physics community. In addition, the Society conducts extensive programs in education, public outreach, and media relations. APS has fourteen divisions and nine topical groups covering all areas of physics research. There are six forums that reflect the interest of its 46,000 members in broader issues, and eight sections organized by geographical region.

In 1999, the APS celebrated its Centennial with the biggest-ever physics meeting in Atlanta, and in 2005 APS took a lead role in US participation in the World Year of Physics.

For more information, please click here

Contacts:
James Riordon

301-209-3238

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Possible Futures

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Chip Technology

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project