Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Antibody Replacements Just a "Click" Away (Special Interest Story)

Abstract:
Chemists at the California Institute of Technology (Caltech) and The Scripps Research Institute (SRI) have developed an innovative technique to create cheap but highly stable chemicals that have the potential to take the place of the antibodies used in many standard medical diagnostic tests. James R. Heath, Ph.D., principal investigator of the Nanosystems Biology Cancer Center at Caltech, one of eight Centers of Cancer Nanotechnology Excellence, and K. Barry Sharpless, Ph.D., SRI, and their colleagues describe the new technique in the journal Angewandte Chemie International Edition.

Antibody Replacements Just a "Click" Away (Special Interest Story)

Bethesda , MD | Posted on August 30th, 2009

Last year, Dr. Heath and his colleagues announced the development of the integrated blood-barcode chip, a diagnostic medical device about the size of a microscope slide that can separate and analyze dozens of proteins using just a pinprick of blood. The barcode chip employed antibodies, which are proteins utilized by the immune system to identify, bind to, and remove particular foreign compounds such as bacteria, viruses, and other proteins.

"The thing that limits us in being able to go to, say, 200 proteins in the barcode chip is that the antibodies used to detect the proteins are unstable and expensive," said Dr. Heath. "We have been frustrated with antibodies for a long time, so we wanted to be able to develop antibody equivalents—what we call protein capture agents—that can bind to a particular protein with very high affinity and selectivity and that pass the following test: You put a powder of them in your car trunk in August in Pasadena, and you come back a year later and they still work."

In the new work, Dr. Heath and his colleagues have developed a protocol to quickly and cheaply make such highly stable compounds, which are composed of short chains of amino acids, or peptides. The technique makes use of the "in situ click chemistry" method introduced by Dr. Sharpless in 2001, in which chemicals are created by joining—or "clicking"—smaller subunits together.

To create a capture agent for a particular protein, the scientists devised a stepwise approach in which the first subunit of the capture agent is identified, and then that unit, plus the protein, is used to identify the second subunit, and so on. For the first subunit, a fluorescent label is added to the protein, which then is incubated with a bead-based library of tens of millions of short-chain peptides, representing all the potential building blocks for the capture agent. When one of those peptides binds to the protein of interest, the fluorescent label is visualized on the bead (red, blue, or green, depending on the type of label), allowing the linked protein-peptide complex to be identified.

That first peptide, which is about one-third of the length of the final capture agent the scientists are trying to make, then is isolated, purified, and modified on one end by the addition of a chemical group called an alkyne. This is the anchor peptide, which then is incubated, together with the same protein, with the bead-based library. The bead-based library now contains peptides that have been chemically modified to contain an azide group at one end. The alkyne group on the added peptide can potentially chemically react with the azide group of the library's peptides to create a new peptide that is now two segments long.

However, the reaction can occur only when the second peptide comes into close contact with the first on the surface of the target protein, which means that both must have affinity for that protein; essentially, the protein itself builds an appropriate capture agent. The two-segment-long peptide then is isolated and purified, "and then we modify the end of that with an alkyne and add it back to the library to produce a three-segment peptide, which is long enough to be both selective for and specific to the target protein," Dr. Heath said.

"What Dr. Heath has shown is that in several iterations, a high-affinity ligand for a protein can be created from blocks that do not bind to the protein all that well; the trick is to repeat the in situ screen several times, and the binding improves with every iteration," noted Dr. Sharpless.

"This is about as simple a type of chemistry as you can imagine," said Dr. Heath. The process, he said, makes "trivial" the "Herculean task of finding molecules that bind selectively and with high affinity to particular proteins. I see no technical reason it couldn't replace any antibody."

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Iterative in situ click chemistry creates antibody-like protein-capture agents”

Related News Press

News and information

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

Nanomedicine

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Discoveries

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project