Home > News > Core/Shell Composite Nanowires Produced by Self-Scrolling Carbon Nanotubes onto Copper Nanowires
August 11th, 2009
Core/Shell Composite Nanowires Produced by Self-Scrolling Carbon Nanotubes onto Copper Nanowires
Abstract:
Researchers at College of Physics Science and Technology, China University of Petroleum, Dongying, Shandong and Rowland Institute at Harvard, Harvard University, have demonstrated a novel method to produce core/shell composite nanowires (NWs) by self-scrolling carbon nanotubes (CNTs) onto copper NWs via forced-field-based molecular dynamic (MD) simulations. As per the innovation when large diameter CNTs are placed beside the copper NWs, the CNTs approach the NWs, collapse, and self-scroll onto the NWs, resulting in coaxial core/shell composite NWs. It is found that the van der Waals force plays an important role in the formation of the composite NWs. The expected outcome of this novel method is to determine various strategies on how to produce composite NWs. Coaxial core/shell composite NWs represent an important class of nanoscale building blocks with substantial potential for exploring new concepts and functional materials.
Source:
lucintel.com
Related News Press |
News and information
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Announcements
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Research partnerships
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
Nanoparticle quasicrystal constructed with DNA: The breakthrough opens the way for designing and building more complex structures November 3rd, 2023
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |