Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > EELS Finds Atoms: Electron energy loss spectroscopy pinpoints single-atom impurities in solids

July 6th, 2009

EELS Finds Atoms: Electron energy loss spectroscopy pinpoints single-atom impurities in solids

Abstract:
Researchers in Japan have pushed to the single-atom limit the sensitivity of the chemical spectroscopy method called electron energy loss spectroscopy (EELS). The advance in EELS's analytical resolving power provides scientists the ability to pinpoint in solids the locations of lone atoms such as impurities and identify them chemically (Nat. Chem., DOI: 10.1038/nchem.282).

In an EELS experiment, researchers irradiate a solid specimen with an electron beam and measure the element-specific decrease in beam energy (the energy loss) caused by interactions between the beam and sample atoms. Commonly used in conjunction with transmission electron microscopy (TEM), EELS can often reveal the chemical identity of atoms in the nanometer-sized area probed by the TEM beam.

A standard way to boost the spatial resolution of both methods is to increase the beam energy (up to about 400 keV), which narrows the electron beam toward atomic dimensions. But therein lies a trade-off: Raising the acceleration voltage focuses the beam but typically destroys sample structures. Lowering the beam energy spares the specimen but destroys the focus. Both problems dash chances for single-atom analysis.

Source:
acs.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Tools

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project