Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Solar and Nuclear Energy Expertise to be Enhanced by Research Centers

Abstract:
Los Alamos to establish two DOE-funded Energy Frontier Research Centers

Solar and Nuclear Energy Expertise to be Enhanced by Research Centers

Los Alamos, NM | Posted on May 11th, 2009

Solar- and nuclear-energy technology advancements from Los Alamos National Laboratory (LANL) could help the nation in its quest to capture viable sources of alternative energy, thanks to funding from the U.S. Department of Energy's Office of Science.

Los Alamos will be home to two new Energy Frontier Research Centers (EFRCs)—each designed to advance scientific research in alternative and renewable energy—through a five-year funding commitment by DOE. Forty-six such centers will be established nationwide at national laboratories, universities, nonprofit organizations, and private firms. The two LANL centers each will receive $3.8 million a year in funding ($19 million each total over the five-year term).

One center, led by Los Alamos National Laboratory Fellow Victor Klimov, will focus on exploiting the physical properties of nanomaterials (compilations of structures so tiny they can't be seen by the human eye) to more efficiently convert solar energy into electric power, or develop materials such as highly efficient solar collectors that could be painted onto a surface to generate electricity. At the center of this research are quantum dots, extremely tiny semi-conducting materials with the ability to generate more than one electrical-energy unit (electron) per single light unit (photon)—an improvement over today's solar cells.

"Engineered nanostructures such as quantum dots have the ability to harvest light more efficiently than silicon," Klimov said. "Quantum dots and similar nanomaterials show tremendous potential in numerous applications that could make solar energy a more viable alternative energy source."

The other center, led by Los Alamos National Laboratory Fellow Michael Nastasi, will focus on developing robust materials that will be able to withstand extreme conditions such as constant bombardment by radiation or around-the-clock mechanical beatings. To develop these materials, Nastasi and his research team will develop technology to design and engineer bulk materials at the molecular level using nanomaterials.

"The goal of this research is to create materials that will withstand the rigors of next-generation nuclear of reactors to allow them to function reliably and safely for long periods of time with reduced maintenance," Nastasi said. "We will identify inherent characteristics of materials at the atomic level that allow these materials to withstand extreme environments or lead to failure within them. We would then hope to be able to selectively design and create structures at the nanoscale to exploit strengths or eliminate weaknesses to make these materials particularly suited to surviving in extreme environments."

In addition to leading two centers, LANL will participate in five others nationwide. Funding for the two centers does not come from the 2009 American Recovery and Reinvestment Act. More information about the EFRCs can be found at www.sc.doe.gov/bes/EFRC.html.

####

About LANL
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and the Washington Division of URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
James E. Rickman

(505) 665-9203 (04-420)

Copyright © LANL

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project