Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Georgia Tech will push boundaries of nanotechnology research with innovative low-temperature carbon nanotube fabrication tool

Low temperature growth of carbon nanotubes is a research goal of the Georgia Institute of Technology, using a new tool and process from Surrey NanoSystems.
Low temperature growth of carbon nanotubes is a research goal of the Georgia Institute of Technology, using a new tool and process from Surrey NanoSystems.

Abstract:
- processing temperatures of ~350 C supports growth on flexible polymer substrates

- carbon-nanotube heatsink structures for thermal management are one major design goal

Georgia Tech will push boundaries of nanotechnology research with innovative low-temperature carbon nanotube fabrication tool

Atlanta, GA | Posted on March 2nd, 2009

The leading research university, Georgia Institute of Technology, has ordered a nanomaterial growth tool from Surrey NanoSystems.

The NanoGrowth 1000n equipment chosen incorporates an innovative low-temperature growth module that will allow precision carbon nanotubes and related nanomaterials to be grown repeatably at much lower temperatures than normal - down to 350 degrees C initially and potentially even lower. The capability will help researchers to explore growth on a very wide range of target substrates from active silicon devices to flexible polymer substrates.

One of Georgia Tech 's major research aims is to investigate the development of carbon nanotube (CNT) heatsink structures to dramatically increase heat conduction and dissipation capability - combating a prime cause of silicon chip failure and supporting further advances in integration density and performance.

Georgia Tech chose Surrey NanoSystems' NanoGrowth tool primarily for the flexibility of research opened up by its low-temperature capability, and its ability to grow material across large substrate areas of up to 4 inches (100 mm).

Dr Baratunde Cola, Assistant Professor at the George W Woodruff School of Mechanical Engineering, specified the equipment. During the selection process, against strong competition from a number of other tool vendors, Surrey NanoSystems demonstrated the NanoGrowth's ability to grow ordered nanostructures on flexible polymer materials of the general type used for flexible printed circuits. The team also grew sample structures using special catalyst materials created by Georgia Tech to foster particular nanomaterial structures of interest. The processing temperature used in the trials was around 350 degrees C. However, trials at even lower processing temperatures of around 300 degrees C are planned.

Dr Cola has just established a new research group called NEST - NanoEngineered Systems and Transport Research Group - that further extends the University's large footprint in nanotechnology research. NEST is a part of Georgia Tech's renowned Microelectronics Research Center and its research aims include developing technology for cleaner energy solutions, smaller and more affordable electronics, and general improvements to global living standards.

The NanoGrowth tool is one of the first and most important pieces of capital equipment that will be available to the NEST team. The tool includes both CVD (chemical vapor deposition) and PECVD (plasma-enhanced CVD) processing capability, allowing CNT growth at 'standard' temperatures in and around the 500-1000 degrees C range, as well as at much lower temperatures of 350-400 degrees C and below. Low temperature growth is particularly interesting, as it opens up many new application areas for CNTs. However, the team is equally interested in NanoGrowth's conventional high temperature growth capability, as the tool will be available to a wide spectrum of nanotechnology researchers and students.

Developed with the help of groundbreaking research into CNT fabrication undertaken at the UK University of Surrey's Advanced Technology Institute, NanoGrowth comes with proven recipes for the precise and repeatable growth of CNTs and other nanomaterials. When fitted with the company's unique patented low-temperature fabrication system, a combination of heat removal hardware and processing steps allow precise carbon nanotube growth at temperatures below 400 degrees C, making the system suitable for growing nanomaterials on fabricated silicon structures for advanced insulation or conduction purposes.

Another novel feature of the NanoGrowth tool that supports this application area is its innovative heat transfer system. This allows processing temperatures to ramp at up to 300 degrees C per second. This highly dynamic performance - which is an order of magnitude or more faster than many other tools - provides a platform for complex CNT research as it can allows can prevent ultra-finely-spaced catalyst material deposits from agglomerating during heating, supporting the growth of highly integrated arrays and shapes.

"Engineered nanostructures can be exploited to enhance energy transport and conversion processes and catalyze progress in a very large number of applications," says Assistant Professor Baratunde Cola of Georgia Institute of Technology. "The versatility of the NanoGrowth system will be a critical resource in this work, giving us the means to explore the growth of nanostructures on a very broad range of surfaces."

The NanoGrowth system will be delivered in Q2 2009. During the system building period, Surrey NanoSystems' scientific staff will be assisting Dr Cola by performing a number of trial nanomaterial growth processes to his specifications using NanoGrowth tools installed at the company and at the University of Surrey's Advanced Technology Institute. The target substrates include the high performance polyimide film Kapton, and Surrey NanoSystems expects to provide Dr Cola with a proven processing 'recipe' to allow his detailed research work to begin very quickly once the system is installed.

"NanoGrowth addresses the commercial process developer's need for stable and repeatable results, providing automated control over all aspects of CNT synthesis from catalyst generation to final material processing", says Duncan Cooper. "The tool's low temperature capability has allowed us to create processing recipes that can be applied to mainstream CMOS semiconductor processes, and we are now delighted to be working with such a prominent research university as Georgia Tech to grow engineered nanostructures at even lower temperatures."

####

About Georgia Institute of Technology

Surrey NanoSystems is represented in the US by Axiom Resources Technologies of Orange, CA.

Any trade names used are the property of their owners and are recognised by Surrey NanoSystems, including Kapton - a registered mark of DuPont.

For more information, please click here

Contacts:
Surrey NanoSystems
Euro Business Park, Building 24
Newhaven, BN9 0DQ, UK
t: +44 (0)1273 515899


US representative:
Axiom Resources Technologies, Inc.
1669 North O'Donnell Way
Orange, CA 92867-3634, USA.
t: 714-974-4141

www.axrtech.com

Copyright © Surrey NanoSystems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

New-Contracts/Sales/Customers

Bruker Light-Sheet Microscopes at Major Comprehensive Cancer Center: New Advanced Imaging Center Powered by Two MuVi and LCS SPIM Microscopes March 25th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project