Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Double-patterning immersion lithography and advanced strained-silicon technology used to deliver fully functional 28nm chips

Abstract:
UMC Announces Foundry Industry's First 28nm SRAMs

Double-patterning immersion lithography and advanced strained-silicon technology used to deliver fully functional 28nm chips

HSINCHU, Taiwan | Posted on October 27th, 2008

UMC (NYSE: UMC; TSE: 2303),
a leading global semiconductor foundry, today announced that it has manufactured the foundry industry's first fully functional 28nm SRAM chips. The chips are based on UMC's independently developed low-leakage (LL) process technology. UMC utilized advanced double-patterning immersion lithography and strained silicon technology to produce the chips, which feature very small six-transistor SRAM cell sizes of approximately 0.122 um2.

"UMC's continued R&D commitment has helped us maintain our leadership position in nanometer technology over the years," said S.C. Chien, vice president of advanced technology development at UMC. "We are excited about this latest achievement for 28nm, as it provides a solid starting point for further development of this technology node towards mainstream availability down the road. Improvements on areas such as minimum supply-voltage, modeling of strain effects, and natural yield will be our focus going forward."

UMC incorporates a dual approach for its 28nm technology to address different market applications. The foundry uses conventional silicon gate/silicon-oxy-nitride gate oxide technology for its LL (low leakage) process, which is ideal for portable applications such as mobile phone ICs. UMC's second option will utilize a high-k/metal gate stack for speed-intensive products such as graphic, application processor, and high-speed communication ICs. UMC's 28nm process provides almost twice the density of the 40nm technology, which is currently being produced at its 300mm fabs. UMC will also provide foundry services for customized 32nm technologies based on its 28nm process platform.

####

About UMC
UMC (NYSE: UMC, TSE: 2303) is a leading global semiconductor foundry that provides advanced technology and manufacturing services for applications spanning every major sector of the IC industry. UMC's customer-driven foundry solutions allow chip designers to leverage the strength of the company's leading-edge processes, which include production proven 65nm, 45/40nm, mixed signal/RFCMOS, and a wide range of specialty technologies. Production is supported through 10 wafer manufacturing facilities that include two advanced 300mm fabs; Fab 12A in Taiwan and Singapore-based Fab 12i are both in volume production for a variety of customer products. The company employs approximately 13,000 people worldwide and has offices in Taiwan, Japan, Singapore, Europe, and the United States.

For more information, please click here

Contacts:
Charlene Loveless
(408) 523-7350


In Taiwan:
UMC
Alex Hinnawi
(886) 2-2700-6999 ext. 6958

Copyright © UMC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project