Home > News > How colloidal dispersions relax under stress
September 22nd, 2008
How colloidal dispersions relax under stress
Abstract:
Of the many physical systems that we can study, colloids and colloid dispersions may well be one of the most prevalent in our daily lives. Inks, paints, clays, emulsions, and milk, as well as surfactant aggregates (micelles) and nanoparticle suspensions are all colloid dispersions. The study of how these dispersions and other complex liquids flow—a field called rheology—is essentially a problem of nonequilibrium statistical mechanics that must account for many-body interactions. The response of colloid dispersions to a shear force is often nonlinear and can result in interesting physical phenomena. The application of a shearing force, for example, can increase the viscosity of a dispersion, an effect that can be harnessed to make personal protective devices.
Source:
physics.aps.org
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||