Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scripps Research Institute awarded patent for remarkable chemical technology

Abstract:
Procedure can be used to create new electronics, adhesives, pharmaceuticals, and other products

Scripps Research Institute awarded patent for remarkable chemical technology

La Jolla, CA | Posted on May 20th, 2008

The patent's diverse potential applications include the development of new drugs, bioactive nanomaterials, anti-bacterial and non-immunogenic coatings for medical implants, coatings for semiconductors, coatings and adhesives for ships' hulls, self-healing materials, microelectronics and responsive nanomaterials, and surface-sensitive adhesives, to name a few.

The patented technology stems from the discovery that, under proper conditions, copper can quickly and reliably catalyze members of two large chemical groups, azides and alkynes. These reactions enable the controlled formation of an almost endless array of new molecules.

"Because this technology is so revolutionary, it has broad applicability that is very exciting," says Polly Murphy, senior vice president of Business and Scientific Services at Scripps Research. "We believe it has the potential to be used in every branch of industry that uses chemistry."

The patented reactions are a commercially promising development within the broader domain of "click chemistry," pioneered by Nobel Prize-winning chemist Barry Sharpless, a professor at Scripps Research. Click chemistry refers to classes of reactions in which the chemical components used "click" together to bind as easily and reliably as the two pieces of a seatbelt buckle. The buckle works no matter what is attached to it as long as the two pieces can reach one another.

Thousands of Citations

Click chemistry research by Sharpless and his colleagues was initially met with skepticism by a chemistry community that was more accustomed to research focused on increasingly complex chemical reactions.

"It was plain laughed at in the beginning," says Valery Fokin, an associate professor and Sharpless' colleague.

But, over time, the utility of the chemistry involved became clear, and there are now more than 1,000 citations for the work in academic publications. The new patent is further confirmation of click chemistry's importance.

Click chemistry focuses mainly on reactions involving azides, a class of nitrogen-containing molecules, and alkynes, a group of hydrocarbons such as acetylene. These groups have an extreme chemical fondness for "clicking" with each other to form stable molecules known as triazoles. As importantly, these two groups are extremely reticent to bond with any other types of molecules. Among other benefits, this means reactions involving these groups can be done almost anywhere—including in water and blood where many other reactions are impossible—without forming unwanted byproducts.

At the beginning of the work, one limiting factor with the azides and alkynes was that reactions between them usually proceeded slowly. But in 2001, Fokin and Luke Green (then a postdoc in the lab and a co-inventor) made a surprising discovery that copper salts dramatically accelerated azide-alkyne cycloaddition, and led to the new patent in the process. The scientists found that when copper was present along with azides and alkynes, the reaction between them could proceed millions of times faster and with almost 100 percent reliability—an almost unheard of concept in chemistry. "The copper acts as a sort of universal connector," says Fokin. No matter what kind of azide and alkyne—one could be attached to another molecule and one could be attached to a car—you will make the link between the two."

Though some questions about the mechanisms involved remain open, in general copper interacts with both azides and alkynes to slightly alter them, making them more reactive with each other, dramatically facilitating formation of triazoles. But despite this hyperactive reactivity, the two groups remain inert to other types of molecules.

"It was pure serendipity," says Sharpless of the discovery of the copper effect. "I just couldn't believe that reaction. It sounds like magic, but nothing can stop it. It's like a black hole." Remarkably, though, the copper has almost no effect on either an azide or an alkyne alone; the reactivity only occurs if at least one of each is present.

Many Potential Applications

Of many areas where the patented technology can be used, potential applications include the production of new pharmaceutical candidates and new polymeric materials, such as glues and coatings, for use in high-tech electronics applications. Triazoles are exceptionally stable at high temperatures, which makes them ideal for use in electronics, where computers and other devices must heat up and cool down countless times for years on end without the glues in their chips (or electronic components) breaking down. Certain triazoles are also exceedingly sticky, bonding strongly to metals and other materials including glass and certain plastics, another critical factor for electronics. "Together with our colleague M.G. Finn, we've already shown that we can make adhesives that are better at ‘welding' metal components together than anything else on the market," says Fokin.

Another advantage in developing adhesives is that the remarkable reactivity involved ensures that any two azides and alkynes can be bound together. That means designers can simply choose molecules from those groups that have needed properties, such as repelling water or absorbing certain chemicals, and bind them to form a single, web-like molecule, or polymer.

In drug discovery work, the copper-catalyzed reactions display another side of their benefits. To identify potential pharmaceuticals, researchers often test libraries of thousands or even millions of molecules to identify those that might kill a particular virus or type of cancer cell. Because the azides and alkynes are so reactive when copper is around, large groups of both types of molecules can be combined, allowing bonding to form molecule libraries that can then be run through these disease tests. Using copper-catalyzed azide-alkyne cycloaddition, Scripps Research scientists have already identified molecules with potential for fighting AIDS, nicotine addiction, and other conditions. The reactions' gluing powers have also proven extremely effective at binding fluorescent alkyne dyes to proteins and other biological components, which allows researchers to observe how they behave in cells and what roles they may play in diseases.

With the technology now patented and available for licensing, Fokin looks forward to seeing how the chemistry is applied. "A new technology is worth something only if people use it and it actually enables new and useful discoveries," he says.

Sharpless says that's all but inevitable. Within and beyond those areas already identified as ripe for use of the chemistry, he says, "People are going to be coming up with things we can't even imagine right now."

###

Those interested in more information about licensing opportunities should contact the Office of Technology Development at Scripps Research, (858) 784-9388 or email

####

About Scripps Research Institute
The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Currently operating from temporary facilities in Jupiter, Scripps Florida will move to its permanent campus by 2009.

For more information, please click here

Contacts:
Keith McKeown

858-784-8134

Copyright © Scripps Research Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Chemistry

New method in the fight against forever chemicals September 13th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Nanobiotechnology

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project