Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Informed Decisions

February 6th, 2008

Informed Decisions

Abstract:
My Harvard colleague and coauthor George Whitesides, with whom I am working on the book No Small Matter, forthcoming in 2009 from Harvard University Press, asked that I make an interesting representation of nanotubes. I am a science photographer, not an illustrator, so my first course of action is usually to think photographically. The obvious, making a scanning electron micrograph of a nanotube, was not an option. Others have done that, probably much better than I would have. I decided to photographically simulate a nanotube structure.

Here's what I did. First I printed a black hexagonal pattern, representing a standard carbon lattice, on an 8x10 piece of transparent acetate (a). I then began to roll the acetate to make a tube. Immediately, something wonderful happened: I couldn't make a decision about how to longitudinally connect the edges of the paper. I was faced with a few choices. The literature informed me that there were indeed various possible configurations for carbon nanotubes, and that the ultimate configuration was significant in determining the electrical properties of the nanotube.

Source:
americanscientist.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project