Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Discovery cuts cost of next generation optical fibres

Electron microscope image of the hollow-core fibre
Electron microscope image of the hollow-core fibre

Abstract:
Scientists have discovered a way of speeding up the production of hollow-core optical fibres - a new generation of optical fibres that could lead to faster and more powerful computing and telecommunications technologies.

Discovery cuts cost of next generation optical fibres

Bath, UK | Posted on January 17th, 2008

The procedure, described today in the journal Optics Express, cuts the production time of hollow-core optical fibres from around a week to a single day, reducing the overall cost of fabrication.

Initial tests show that the fibre is also superior in virtually every respect to previous versions of the technology, making it an important step in the development of new technologies that use light instead of electrical circuits to carry information.

These technologies include faster optical telecommunications, more powerful and accurate laser machining, and the cheaper generation of x-ray or ultra-violet light for use in biomedical and surgical optics.

"This is a major improvement in the development of hollow-core fibre technology," said Professor Jonathan Knight from the Centre for Photonics & Photonic Materials in the Department of Physics at the University of Bath.

"In standard optical fibres, light travels in a small cylindrical core of glass running down the fibre length.

"The fact that light has to travel through glass limits them in many ways. For example, the glass can be damaged if there is too much light.

"Also, the glass causes short pulses of light to spread out in a blurring effect that makes them less well defined. This limits its usefulness in telecommunications and other applications.

"Hence, fibres in which light travels in air down a hollow core hold great promise for a next generation of optical fibres with performance enhanced in many ways."

The problem in developing hollow-core fibres is that only a special sort of optical fibre can guide light down an air hole. They use a two-dimensional pattern of tiny holes in the glass around the core to trap the light within the core itself.

The highly detailed nature of these fibres means that they have been difficult to fabricate and they can only work for a limited range of wavelengths.

However, the new procedure developed by the Bath photonics group shows how a tiny change to these fibres - narrowing the wall of glass around the large central hole by just a hundred nanometres (a 10 millionth of a metre) - broadens the range of wavelengths which can be transmitted.

They achieved this by omitting some of the most difficult steps in the fabrication procedure, reducing the time required to make the fibres from around a week to a single day.

The improved fibre was developed as part of a European Commission-funded Framework 6 project ‘NextGenPCF' for applications in gas sensing.

However, the superior performance of the fibre means that it could have a significant impact in a range of fields such as laser design and pulsed beam delivery, spectroscopy, biomedical and surgical optics, laser machining, the automotive industry and space science.

"The consequences of being able to use light rather than electrical circuits to carry information will be fundamental," said Professor Knight.

"It will make optical fibres many times more powerful and brings the day when information technology will consist of optical devices rather than less efficient electronic circuits much closer.

"For biomedical research, we can use these fibres to deliver light for diagnosis or surgery anywhere - even deep inside the body.

"Almost any device where light is important or can be used, photonic crystal fibres can make more efficient, sensitive and powerful."

‘Control of surface modes in low loss hollow-core photonic bandgap fibers', Optics Express, Vol. 16, Issue 2, pp. 1142-1149.

####

About University of Bath
The University of Bath is one of the UK's leading universities, with an international reputation for quality research and teaching. In 15 subject areas the University of Bath is rated in the top ten in the country.

For more information, please click here

Contacts:
Andrew McLaughlin
University Press Office
+44 (0)1225 386 883
+44 (0)7966 341 357

Copyright © University of Bath

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

Photonics/Optics/Lasers

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project