Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Nanobioelectronics: Prospects of New Science

December 27th, 2007

Nanobioelectronics: Prospects of New Science

Abstract:
Nanobioelectronics is a new, rapidly developing discipline, combining achievements of nanoelectronics and molecular biology. Science community has already developed theory and practical approaches to nanobioelectronics - DNA based nanocables, electronic sensors, storage devices and logical components. Basics of nanobioelectronics are processes of charge transport in biological macromolecules and applications of abovementioned molecules in building molecular structures of nanosize. Integration of nanoelectronic devices and such complex biological structures as cells throws a bridge between biotechnology and nanobioelectronics.

Size of biological materials, such as DNA (deoxyribonucleic acid), RNA (ribonucleic acid), proteins and biomembranes and etc, is comparable with sizes of nanotubes, nanoparticles and quantum dots. Combination of biomaterials with metal or semiconducting particles, fullerenes or carbon nanotubes results in a new class of materials for creating unique electronic or optical systems. Main trends of nanobioelectronics include creating hybrid biosensors, complex DNA-based nanoelectronic circuits, designing nanobiotransistors, diodes, nanoengines, nanotransporters and etc. Such devices require quantum-mechanical modeling and supercomputer calculations.

Source:
russia-ic.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Nanoelectronics

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Non-linear effects in coupled optical microcavities August 5th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Using the environment to control quantum devices: A deeper understanding of how the environment impacts quantum behaviour is bringing quantum devices one step closer to widespread adoption June 1st, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Nanobiotechnology

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project