Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tool for low-temperature carbon nanotube growth starts trials

Abstract:
ATI and CEVP joint venture set to catalyse revolution in flat displays, ICs, high-brightness light sources, etc

World's first tool for low-temperature carbon nanotube growth starts trials

Newhaven, & The University of Surrey, UK | Posted on November 29, 2005

CEVP has developed a fabrication tool to commercialise the revolutionary low temperature carbon nanotube growth process developed by the University of Surrey's Advanced Technology Institute (ATI). The new tool - NanoGrowth - is currently being trialled and characterised, and the two partners anticipate releasing the technology for commercial use in March 2006.

The exploitation of the incredible mechanical and electrical properties of carbon nanotubes in precision applications such as integrated circuits and flat panel displays has been hindered by current growth techniques, which can elevate substrate temperatures to 1000 degrees C or more, resulting in damage or material compatibility issues. In contrast, the NanoGrowth tool, which is designed to deliver nanomaterial growth across areas up to three inches in diameter, employs a unique thermal control system to maintain the growth substrate at room temperature.

"The goal of this tool is to make precision carbon nanotube fabrication possible at low temperatures, together with a scale of growth area that is suitable for many high technology applications," says Ben Jensen of CEVP. "We believe it will be the first platform for making carbon nanotubes and nanowires a practical proposition in commercial high technology applications."

The equipment is a joint venture between CEVP - a leader in the provision of plasma process tools to research institutions and semiconductor manufacturers - and ATI at the University of Surrey, one of the UK's leading professional, scientific and technological universities. The partners have collaborated to develop a plasma-enhanced chemical vapour deposition (PECVD) and vacuum process that is optimised for the growth of carbon nanotubes with highly controlled properties such as density, length and position. Special control sequences are also provided to make carbon nanotubes 'flower', for large surface area applications.

The integrated thermal control system maintains the work area substrate at room temperatures during processing, allowing carbon nanotube materials to be grown with precision - even on highly heat sensitive materials such as plastic. The tool may also be used to grow related nanomaterials including doped silicon nanowires and metal oxide nanowires on suitable substrates.

"The high degree of thermal control and automation offered by this tool allows more precise control of growth parameters, for accurate and repeatable processing," says Professor Ravi Silva, Director of the Advanced Technology Institute (ATI).

Processing capability is highly programmable, providing great flexibility for research or development use. User-friendly software - a version of CEVP's field-proven SCADA (supervisory control and data acquisition) package - gives fine control over all stages of processing via graphical MIMIC-style displays. As part of the beta testing phase, ATI and CEVP will be creating generic nanotube and nanowire recipes that will be provided with the tool, which offer ready-to-use growth processes. Users will also have full manual control, and will be able to adapt these recipes, or create their own custom processes using a menu-driven user interface to control gas flow rates, voltage and current levels, RF power, temperatures, etc. Sophisticated data-logging, trending and batch tracking facilities help users to develop and document their own processes, to optimise recipes for commercial production. Remote monitoring is also possible.

The tool has also been constructed using modular design principles, which is helpful to R&D work as it facilitates customisation and upgradeability.

The University of Surrey's ATI has been active in the nanotechnology field for some eight years, working for sponsors in areas including defence. It first described its ground-breaking room temperature growth process in Nature Materials in 2002, and this has subsequently been patented. ATI's work since then has improved the process, and made it capable of growing material across much larger substrate areas. During the development of this tool, the collaboration with CEVP has also resulted in numerous refinements that have helped to convert the laboratory technique into a practical manufacturing process, and CEVP is in the process of patenting these techniques.

The precision control and scale of growth offered by the new tool is expected to be of considerable use in both academic and commercial laboratories, for the development of practical nanomaterial production techniques for high technology applications. Likely applications include low-resistance nanowires in integrated circuits, semiconducting nanotubes for fabricating high performance transistors, micro-miniature heatsinks, ultra-tough polymer composites, gas sensors, and light sources for flat panel displays - which because of the lower processing temperatures could now be fabricated on low-cost soda lime glass.

More information:

NanoGrowth datasheet

CEVP

ATI

####

About the University of Surrey:
The University of Surrey (UniS) is one of the UK's leading professional, scientific and technological universities with a world class research profile and a reputation for excellence in teaching and research. Ground-breaking research at the University is bringing direct benefit to all spheres of life - helping industry to maintain its competitive edge and creating improvements in the areas of health, medicine, space science, the environment, communications, defence and social policy. Programmes in science and technology have gained widespread recognition and it also boasts flourishing programmes in dance and music, social sciences, management and languages and law. In addition to the campus on 150 hectares just outside Guildford, Surrey, the University also owns and runs the Surrey Research Park, which provides facilities for 140 companies employing 2,700 staff. The 2005 Guardian University League Table placed the University of Surrey 18th overall for its undergraduate programmes (out of 122 UK universities), which along with recognition from The Sunday Times for being 'The University for Jobs', underlines UniS' growing reputation for providing high quality, relevant degrees.

For more information, please click here

Contacts:
CEVP Ltd
Unit 24 Euro Business Park
New Road, Newhaven East Sussex BN9 0DQ, UK
t: +44 (0)1273 515899
f: +44 (0)1273 512311
sales@cevp.co.uk

ATI: Professor S. Ravi P. Silva
Advanced Technology Institute
University of Surrey, GU2 7XH, UK
t: +44 (0) 1483 689825
f: +44 (0) 1483 686081
s.silva@surrey.ac.uk

Copyright © University of Surrey

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project