Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Using magnets to toggle nanolasers leads to better photonics: Controlling nanolasers with magnets lays the groundwork for more robust optical signalling

A plasmonic laser is turned on (top) and off (bottom) by switching the magnetisation of a nanodot array. The zoomed insets show the magnetic field around a single nanodot.
A plasmonic laser is turned on (top) and off (bottom) by switching the magnetisation of a nanodot array. The zoomed insets show the magnetic field around a single nanodot.

Abstract:
A magnetic field can be used to switch nanolasers on and off, shows new research from Aalto University. The physics underlying this discovery paves the way for the development of optical signals that cannot be disturbed by external disruptions, leading to unprecedented robustness in signal processing.

Using magnets to toggle nanolasers leads to better photonics: Controlling nanolasers with magnets lays the groundwork for more robust optical signalling

Aalto, Finland | Posted on December 24th, 2021

Lasers concentrate light into extremely bright beams that are useful in a variety of domains, such as broadband communication and medical diagnostics devices. About ten years ago, extremely small and fast lasers known as plasmonic nanolasers were developed. These nanolasers are potentially more power-efficient than traditional lasers, and they have been of great advantage in many fields—for example, nanolasers have increased the sensitivity of biosensors used in medical diagnostics.

So far, switching nanolasers on and off has required manipulating them directly, either mechanically or with the use of heat or light. Now, researchers have found a way to remotely control nanolasers.

‘The novelty here is that we are able to control the lasing signal with an external magnetic field. By changing the magnetic field around our magnetic nanostructures, we can turn the lasing on and off,’ says Professor Sebastiaan van Dijken of Aalto University.

The team accomplished this by making plasmonic nanolasers from different materials than normal. Instead of the usual noble metals, such as gold or silver, they used magnetic cobalt-platinum nanodots patterned on a continuous layer of gold and insulating silicon dioxide. Their analysis showed that both the material and the arrangement of the nanodots in periodic arrays were required for the effect.

Photonics advances towards extremely robust signal processing

The new control mechanism may prove useful in a range of devices that make use of optical signals, but its implications for the emerging field of topological photonics are even more exciting. Topological photonics aims to produce light signals that are not disturbed by external disruptions. This would have applications in many domains by providing very robust signal processing.

‘The idea is that you can create specific optical modes that are topological, that have certain characteristics which allow them to be transported and protected against any disturbance,’ explains van Dijken. ‘That means if there are defects in the device or because the material is rough, the light can just pass them by without being disturbed, because it is topologically protected.’

So far, creating topologically protected optical signals using magnetic materials has required strong magnetic fields. The new research shows that the effect of magnetism in this context can be unexpectedly amplified using a nanoparticle array of a particular symmetry. The researchers believe their findings could point the way to new, nanoscale, topologically protected signals.

‘Normally, magnetic materials can cause a very minor change in the absorption and polarization of light. In these experiments, we produced very significant changes in the optical response— up to 20 percent. This has never been seen before,’ says van Dijken.

Academy Professor Päivi Törmä adds that ‘these results hold great potential for the realization of topological photonic structures wherein magnetization effects are amplified by a suitable choice of the nanoparticle array geometry.’

These findings are the result of a long-lasting collaboration between the Nanomagnetism and Spintronics group led by Professor van Dijken and the Quantum Dynamics group led by Professor Törmä, both in the Department of Applied Physics at Aalto University.

####

For more information, please click here

Contacts:
Sedeer el-Showk
Aalto University

Expert Contacts

Päivi Törmä
Aalto University

Cell: +358 50 3826770
Sebastiaan van Dijken
Aalto University

Cell: +358 50 3160969

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Magnetism/Magnons

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project