Home > Press > USTC develops ultrahigh-performance plasmonic metal-oxide materials
Abstract:
In a study published in Advanced Materials, the researchers from Hefei National Laboratory for Physical Sciences at the Microscale, the University of Science and Technology of China of the Chinese Academy of Sciences, using an electron-proton co-doping strategy, invented a new metal-like semiconductor material with excellent plasmonic resonance performance. This material achieves a metal-like ultrahigh free-carrier concentration that leads to strong and tunable plasmonic field.
Plasmonic materials are widely used in the fields including microscopy, sensing, optical computing and photovoltaics. Most common plasmonic materials are gold and silver. Some other materials also show metal-like optical properties but just perform poor in limited wavelength ranges.
In recent years, much effort has been made in finding high-performance plasmonic materials excluding noble metals. Metal-oxide semiconductor materials have rich and tunable properties such as light, electricity, heat, and magnetism. Hydrogenation treatment can effectively modify their electronic structure to reach rich and tunable plasmon effects. It is a challenge to significantly increase the intrinsically low concentration of free carriers in metal-oxide materials.
The researchers in this study developed a electron-proton co-doping strategy with theoretical calculations. They hydrogenated the semiconductor material MoO3 via a simplified metal-acid treatment at mild conditions, realizing the controllable insulator-to-metal phase transition, which significantly increase the concentration of free carriers in the metal-oxide material.
The free electron concentration in the hydrogenated MoO3 material is equivalent to that of the precious metal. This property makes the plasmon resonance response of the material moving from the near infrared area to the visible light area. The plasmon resonance response of the material has both strong gain and adjustability.
Using ultrafast spectroscopy characterizations and first-principle simulations, the researchers unraveled the quasi-metallic energy band structure in the hydrogen-doped HxMoO3 with its dynamical features of plasmonic responses.
To verify their modification, they performed the surface-enhanced Raman spectra (SERS) of rhodamine 6G molecules on the material. The result showed that the SERS enhancement factor reached as high as 1.1 × 107 with a detection limit at concentration as low as 1 × 10-9 mol/L.
This study developed a general strategy to increase the concentration of free carriers in a non-metal semiconductor material system, which not only realized a quasi-metallic phase material with strong and tunable plasmon effect at low cost, but also significantly broadened the variable range of the physical and chemical properties of semiconductor materials. It provides a unique idea and guidance for designing novel metal oxide functional materials.
####
For more information, please click here
Contacts:
Jane FAN Qiong
86-551-636-07280
Copyright © University of Science and Technology of China (USTC)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Imaging
Snapshot measurement of single nanostructure’s circular dichroism March 25th, 2022
Better understanding superconductors with Higgs spectroscopy Prof. Stefan Kaiser from TU Dresden awarded ERC Consolidator Grant March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Plasmonics
A new dimension in magnetism and superconductivity launched November 5th, 2021
Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021
TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021
Possible Futures
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Optical computing/Photonic computing
Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022
On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Discoveries
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Materials/Metamaterials
Studying atomic structure of aluminum alloys for manufacturing modern aircraft March 25th, 2022
Unexplored dimensions of porous metamaterials: Researchers unlock hidden potential in a long-studied group of materials March 18th, 2022
Copper doping enables safer, cost-effective hydrogen peroxide production February 11th, 2022
Announcements
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022
On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
Tools
Snapshot measurement of single nanostructure’s circular dichroism March 25th, 2022
Eyebrow-raising: Researchers reveal why nanowires stick to each other February 11th, 2022
JEOL Introduces New Scanning Electron Microscope with “Simple SEM” Automation and Live Elemental and 3D Analysis January 14th, 2022
Super-resolved imaging of a single cold atom on a nanosecond timescale January 7th, 2022
Energy
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
USTC found a pathway to high-quality ZnSe quantum wires April 8th, 2022
Photonics/Optics/Lasers
Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022
On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Solar/Photovoltaic
USTC found a pathway to high-quality ZnSe quantum wires April 8th, 2022
Graphene crystals grow better under copper cover April 1st, 2022
Peering into precise ultrafast dynamics in matter March 25th, 2022
“Workhorse” of photovoltaics combined with perovskite in tandem for the first time February 25th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |