Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

Figure 1. Photograph of a chip containing the proposed PLL
The entire all-digital PLL fits in a 50 × 72 μm2

region, making it the smallest PLL to date.
Figure 1. Photograph of a chip containing the proposed PLL The entire all-digital PLL fits in a 50 × 72 μm2 region, making it the smallest PLL to date.

Abstract:
Scientists at Tokyo Institute of Technology (Tokyo Tech) and Socionext Inc. have designed the world’s smallest all-digital phase-locked loop (PLL). PLLs are critical clocking circuits in virtually all digital applications, and reducing their size and improving their performance is a necessary step to enabling the development of next-generation technologies.

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

Tokyo and Yokohama, Japan | Posted on February 11th, 2020

New or improved technologies, such as artificial intelligence, 5G cellular communications, and the Internet-of-Things, are expected to bring revolutionary changes in society. But for that to happen, high-performance system-on-a-chip (SoC)—a type of integrated circuit—devices are indispensable. A core building block of SoC devices is the phase-locked loop (PLL), a circuit that synchronizes with the frequency of a reference oscillation and outputs a signal with the same or higher frequency. PLLs generate ‘clocking signals’, whose oscillations act as a metronome that provides a precise timing reference for the harmonious operation of digital devices.

For high performance SoC devices to be realized, fabrication processes for semiconductor electronics must become more sophisticated. The smaller the area to implement digital circuitry is, the better the performance of the device. Manufacturers have been racing to develop increasingly smaller semiconductors. 7 nm semiconductors (a massive improvement over their 10 nm predecessor) are already in production, and methods to build 5 nm ones are now being looked at.

However, in this endeavor stands a major bottleneck. Existing PLLs require analog components, which are generally bulky and have designs that are difficult to scale down.

Scientists at Tokyo Tech and Socionext Inc., led by Prof. Kenichi Okada, have addressed this issue by implementing a ‘synthesizable’ fractional-N PLL, which only requires digital logic gates, and no bulky analog components, making it easy to adopt in conventional miniaturized integrated circuits.

Okada and team used several techniques to decrease the required area, power consumption and jitter—unwanted time fluctuations when transmitting digital signals—of their synthesizable PLLs. To decrease area, they employed a ring oscillator, a compact oscillator that can be easily scaled down. To suppress jitter, they reduced the phase noise—random fluctuations in a signal—of this ring oscillator, using ‘injection locking’—the process of synchronizing an oscillator with an external signal whose frequency (or multiple of it) is close to that of the oscillator—over a wide range of frequencies. The lower phase noise, in turn, reduced power consumption.

The design of this synthesizable PLL beats that of all other current state-of-the-art PLLs in many important aspects. It achieves the best jitter performance with the lowest power consumption and smallest area (as can be seen in Figure 1). “The core area is 0.0036 mm2, and the whole PLL is implemented as one layout with a single power supply,” remarks Okada. Further, it can be built using standard digital design tools, allowing for its rapid, low-effort, and low-cost production, making it commercially viable.

This synthesizable PLL can be easily integrated into the design of all-digital SoCs, and is commercially viable, making it valuable for developing the much sought after 5 nm semiconductor for cutting-edge applications including artificial intelligence, internet of things and many others, where high performance and low power consumption would be the critical requirements. But the contributions of this research go beyond these possibilities. “Our work demonstrates the potential of synthesizable circuits. With the design methodology employed here, other building blocks of SoCs, such as data converters, power management circuits, and wireless transceivers, could be made synthesizable as well. This would greatly boost design productivity and considerably reduce design efforts,” explains Okada. Tokyo Tech and Socionext will continue their collaboration in this filed to advance the miniaturization of electronic devices, enabling the realization of newer-generation technologies.

This research work was conducted in cooperation with TeraPixel Technologies Inc.


Affiliations:
[1] Tokyo Institute of Technology, Tokyo, Japan [
[2] Socionext Inc., Yokohama, Japan

*Corresponding author’s email:

####

About Tokyo Institute of Technology
Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of “monotsukuri,” meaning “technical ingenuity and innovation,” the Tokyo Tech community strives to contribute to society through high-impact research.
www.titech.ac.jp/english/


About Socionext
Socionext is a global, innovative enterprise that designs, develops and delivers System-on-Chip solutions to customers worldwide. The company is focused on technologies that drive today’s leading-edge applications in consumer, automotive and industrial markets. Socionext combines world-class expertise, experience, and an extensive IP portfolio to provide exceptional solutions and ensure a better quality of experience for customers. Founded in 2015, Socionext Inc. is headquartered in Yokohama, and has offices in Japan, Asia, United States and Europe to lead its product development and sales activities. For more information, visit www.socionext.com.

For more information, please click here

Contacts:
Emiko Kawaguchi
Public Relations Section,
Tokyo Institute of Technology

+81-3-5734-2975

Corporate Planning Office
Socionext Inc.
http://www.socionext.com/en/contact
+81-45-568-1006

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

New test method to standardize immunological evaluation of nucleic acid nanoparticles: Researchers believe accurate, affordable and easily reproduced protocol for assessing immune effects could further research collaboration and advance therapeutic use of new medicines October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Trailblazing theoretical physicist Sylvester James Gates Jr. is among speakers at nanotechnology symposium: Annual event moves to virtual format, open to attendees worldwide at no charge Oct. 29 October 23rd, 2020

Internet-of-Things

GLOBALFOUNDRIES Accelerating Innovation in IoT and Wearables with Adaptive Body Bias Feature on 22FDX Platform October 16th, 2020

A record-setting transistor: Engineering professor designs transistor that could enable cheaper, faster wireless communications November 29th, 2019

Wireless/telecommunications/RF/Antennas/Microwaves

Turning a hot spot into a cold spot: Fano-shaped local-field responses probed by a quantum dot October 9th, 2020

Graphene detector reveals THz light's polarization October 8th, 2020

28HV Solution Accelerates GLOBALFOUNDRIES Leadership in OLED Display Drivers for Mobile Devices: With more than 75 million units shipped to leading smartphone suppliers, GF’s 28HV solution is optimized to enable faster, brighter, sharper, and more power-efficient OLED displays October 1st, 2020

GLOBALFOUNDRIES Announces New 22FDX+ Platform, Extending FDX Leadership with Specialty Solutions for IoT and 5G Mobility: 22FDX+ platform builds upon the success of GF’s industry-leading 22FDX platform, with more than 350 million chips shipped October 1st, 2020

Hardware

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

Possible Futures

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

New test method to standardize immunological evaluation of nucleic acid nanoparticles: Researchers believe accurate, affordable and easily reproduced protocol for assessing immune effects could further research collaboration and advance therapeutic use of new medicines October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Trailblazing theoretical physicist Sylvester James Gates Jr. is among speakers at nanotechnology symposium: Annual event moves to virtual format, open to attendees worldwide at no charge Oct. 29 October 23rd, 2020

Chip Technology

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

GLOBALFOUNDRIES Accelerating Innovation in IoT and Wearables with Adaptive Body Bias Feature on 22FDX Platform October 16th, 2020

GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020

Nanoelectronics

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

FEFU scientists are paving way for future tiny electronics and gadgets August 28th, 2020

Oriented hexagonal boron nitride foster new type of information carrier May 22nd, 2020

A new strategy to create 2D magnetic order April 10th, 2020

Discoveries

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

New test method to standardize immunological evaluation of nucleic acid nanoparticles: Researchers believe accurate, affordable and easily reproduced protocol for assessing immune effects could further research collaboration and advance therapeutic use of new medicines October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Trailblazing theoretical physicist Sylvester James Gates Jr. is among speakers at nanotechnology symposium: Annual event moves to virtual format, open to attendees worldwide at no charge Oct. 29 October 23rd, 2020

Announcements

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

New test method to standardize immunological evaluation of nucleic acid nanoparticles: Researchers believe accurate, affordable and easily reproduced protocol for assessing immune effects could further research collaboration and advance therapeutic use of new medicines October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Trailblazing theoretical physicist Sylvester James Gates Jr. is among speakers at nanotechnology symposium: Annual event moves to virtual format, open to attendees worldwide at no charge Oct. 29 October 23rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Scientists from NUST MISIS manage to improve metallic glasses October 23rd, 2020

Time crystals lead researchers to future computational work October 23rd, 2020

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Artificial Intelligence

New super-resolution method reveals fine details without constantly needing to zoom in August 12th, 2020

Machine learning reveals recipe for building artificial proteins July 24th, 2020

Teaching physics to neural networks removes 'chaos blindness' June 19th, 2020

Engineers put tens of thousands of artificial brain synapses on a single chip: The design could advance the development of small, portable AI devices June 8th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project