Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Lightening up the nanoscale long-wavelength optoelectronics

a, Schematics of the bow-tie antenna-assisted device. b, The cross-section view of the simulated electric field intensity normalized to incident one marks the power-gain around the nanochannel at 0.3 THz electromagnetic waves. c, The scaling of electric field enhancement derived from FDTD method versus channel length and incident frequency. d, Asymmetric ultrashort channel was fabricated by tilt deposition. e, The near-field images are taken around the slit area using broadband illumination. f, Stereograph of the near-field signal.

CREDIT
by Lin Wang, Li Han, Wanlong Guo, Libo Zhang, Chenyu Yao, Zhiqingzi Chen, Yulu Chen, Cheng Guo, Kaixuan Zhang, Chia-Nung Kuo, Chin Shan Lue, Antonio Politano, Huaizhong Xing, Mengjie Jiang, Xianbin Yu, Xiaoshuang Chen, and Wei Lu
a, Schematics of the bow-tie antenna-assisted device. b, The cross-section view of the simulated electric field intensity normalized to incident one marks the power-gain around the nanochannel at 0.3 THz electromagnetic waves. c, The scaling of electric field enhancement derived from FDTD method versus channel length and incident frequency. d, Asymmetric ultrashort channel was fabricated by tilt deposition. e, The near-field images are taken around the slit area using broadband illumination. f, Stereograph of the near-field signal. CREDIT by Lin Wang, Li Han, Wanlong Guo, Libo Zhang, Chenyu Yao, Zhiqingzi Chen, Yulu Chen, Cheng Guo, Kaixuan Zhang, Chia-Nung Kuo, Chin Shan Lue, Antonio Politano, Huaizhong Xing, Mengjie Jiang, Xianbin Yu, Xiaoshuang Chen, and Wei Lu

Abstract:
Recent years have witnessed rapid development of the infrared photoelectric technology and the growth-up of the format of focal plane array, integration methods, as well as the spectral regime, and has widely implemented in fields including environmental resources exploration, military defenses, space science, and in the near future the field of artificial interconnect of things (AIoT) bench for communication and sensing of all things. However, with the diversity of the environment and the complexity of the features of hidden targets, the short-wave infrared detection is disturbed by the varying environmental conditions. Expanding the wavelength range of infrared detection to cover the electromagnetic spectrum from 30 μm to 3000 μm is of great significance for upgrading the capacity of optoelectronic system, such as all-weather monitoring, target recognition in complex conditions, remote sensing and spectroscopy, as well as security-screening. Existing infrared detection materials and devices are limited by intrinsic dark current and operating temperature, which mainly work in the wavelength below 20 μm under stringent cooling condition, and confront huge-challenges in wavelength extension in terms of refrigeration, power consumption, bulky, and difficulty in high-quality material growth. Therefore, there is an urgent requirement to explore novel materials and device structure beyond traditional routes to meet miniaturized technologies development with room temperature working capability, low-power consumption, and long-wavelength detection.

Lightening up the nanoscale long-wavelength optoelectronics

Changchun, China | Posted on May 13th, 2022

In a new paper published in Light Science & Application, a team of scientists, led by Professor Lin Wang from State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, China, and co-workers have explored a topological semimetal-based photodetector for effectively capturing low-energy photons. Combining multiple detection mechanisms, they developed a hybrid Dirac semimetal photodetector with strong interaction at deep-subwavelength regime of ultrashort-channel and efficient photon-conversion led by symmetry engineering. The superior low-energy band topology of Dirac semimetal and peculiar non-equilibrium manipulation, enable the rectification of terahertz signals in the nanometric regime at room temperature. It is worth mentioning that the device possesses excellent environmental stability, and the photocurrent is efficiently generated across wide spectral regime beyond traditional optical technique. The reported method and technique will open up new possibilities for the facile realization of portable room-temperature low-photon detectors with high sensitivity, fast operation, and low NEP, which have significant advantages over the existing technologies.



The detector integrates PtSe2-class type-II Dirac semimetal as the channel material, and is fully optimized in terms of antenna structure, heterogeneous integration, and unbalanced electrodes. It has excellent detection performance for low-energy photons at room temperature, with responsivity exceeding ∼0.2 A/W and noise-equivalent power (NEP) less than ~38 pW/Hz0.5, as well as superb ambient stability. These scientists summarize the operational principle of their photodetector:

“We provide an alternative photodetecion strategy by efficiently integrating and manipulating at the nanoscale the optoelectronic properties of topological Dirac semimetal PtSe2 and its van der Waals heterostructures, based on the following three principles: (1) Our discovery reveals the achieve stronger light-matter interaction beyond the skin depth regime, which is achieved by titled self-aligned technique; (2) Spontaneous photocurrent is versatile manipulated by breaking the the symmetry of the in-plane barrier, so that the carriers can flow in one direction; (3) To suppress the dark current and achieve room temperature rectification, a PtSe2-graphene heterojunction was constructed benefiting from congenital nature of the van der Waals interaction.” Said Prof. Wang, the first author of the work.



“The asymmetrical electrodes forming the nanoscale photoactive region can funnel efficiently the low-energy photons and enable intensive field enhancement, giving rise to a Seebeck electromotive force and a preferential flow of nonequilibrium hot carriers. The maximum responsivity can reach 0.2A/W at zero bias.” they added.



“Considering the superior ambient stability and the excellent potential for scalable synthesis of PtSe2, our work opens new possibilities for the facile realization of portable room-temperature, low-photon detectors, with high sensitivity, fast operation, and low NEP, with great advantages compared to current technologies. It is expected to break through the bottleneck of traditional low-energy photon detection.” the scientists forecast.

####

For more information, please click here

Contacts:
Yaobiao Li
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

Office: 86-431-861-76851
Expert Contact

Lin Wang
Shanghai Institute of Technical Physics, Chinese Academy of Sciences

Copyright © Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Single quantum bit achieves complex systems modeling June 9th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023

Internet-of-Things

New nanowire sensors are the next step in the Internet of Things January 6th, 2023

New chip ramps up AI computing efficiency August 19th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Zinc transporter has built-in self-regulating sensor: New cryo-EM structure of a zinc-transporter protein reveals how this molecular machine functions to regulate cellular levels of zinc, an essential micronutrient June 9th, 2023

Breaking through the limits of stretchable semiconductors with molecular brakes that harness light June 9th, 2023

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

With new experimental method, researchers probe spin structure in 2D materials for first time: By observing spin structure in “magic-angle” graphene, a team of scientists led by Brown University researchers have found a workaround for a long-standing roadblock in the field of two May 12th, 2023

Possible Futures

USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023

Single quantum bit achieves complex systems modeling June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Optical computing/Photonic computing

USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Optica Publishing Group announces launch of Optica Quantum: New, online-only Gold Open Access journal to rapidly disseminate high-impact research results across many sectors of quantum information science and technology May 12th, 2023

Discoveries

Zinc transporter has built-in self-regulating sensor: New cryo-EM structure of a zinc-transporter protein reveals how this molecular machine functions to regulate cellular levels of zinc, an essential micronutrient June 9th, 2023

When all details matter -- Heat transport in energy materials June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Announcements

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023

Zinc transporter has built-in self-regulating sensor: New cryo-EM structure of a zinc-transporter protein reveals how this molecular machine functions to regulate cellular levels of zinc, an essential micronutrient June 9th, 2023

When all details matter -- Heat transport in energy materials June 9th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023

Single quantum bit achieves complex systems modeling June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Military

With new experimental method, researchers probe spin structure in 2D materials for first time: By observing spin structure in “magic-angle” graphene, a team of scientists led by Brown University researchers have found a workaround for a long-standing roadblock in the field of two May 12th, 2023

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Environment

When all details matter -- Heat transport in energy materials June 9th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Researchers create a new 3D extra-large pore zeolite that opens a new path to the decontamination of water and gas: A team of scientists with the participation of the CSIC develops an extra-large pore silica zeolite from a silicate chain January 20th, 2023

Aerospace/Space

Manufacturing advances bring material back in vogue January 20th, 2023

The National Space Society Congratulates NASA on the Success of Artemis I Same-day Launch of the Hakuto-R Lunar Landing Mission will Help Support Future Lunar Crews December 12th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process September 30th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Stanford researchers develop a new way to identify bacteria in fluids: An innovative adaptation of the technology in an old inkjet printer plus AI-assisted imaging leads to a faster, cheaper way to spot bacteria in blood, wastewater, and more March 3rd, 2023

Photonics/Optics/Lasers

USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Optica Publishing Group announces launch of Optica Quantum: New, online-only Gold Open Access journal to rapidly disseminate high-impact research results across many sectors of quantum information science and technology May 12th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project