Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > DNA origami to scale-up molecular motors

Mixing DNA-modified microtubules, DNA origami and kinesin linkers leads to star-like formations of microtubules that are connected by kinesin linkers. This network contracted dynamically when ATP energy was added. 
(Matsuda K. et al., Nano Letters, April 30, 2019)
Mixing DNA-modified microtubules, DNA origami and kinesin linkers leads to star-like formations of microtubules that are connected by kinesin linkers. This network contracted dynamically when ATP energy was added. (Matsuda K. et al., Nano Letters, April 30, 2019)

Abstract:
Researchers have successfully used DNA origami to make smooth-muscle-like contractions in large networks of molecular motor systems, a discovery which could be applied in molecular robotics.

DNA origami to scale-up molecular motors

Tokyo, Japan | Posted on June 13th, 2019

"We successfully demonstrated programmed self-assembly of a biomolecular motor system," write the researchers from Japan and Germany who conducted the study.

The biomolecular motor system, consisting of fibrous microtubules and motor protein kinesins, plays an essential role in cellular transportation systems. Scientists believe they can utilize the motors in molecular robotics but it remains difficult to assemble a larger system from the tiny molecules.

In the current study published in Nano Letters, the research team including Akira Kakugo of Hokkaido University, Akinori Kuzuya of Kansai University, and Akihiko Konagaya of Tokyo Institute of Technology developed a system combining DNA origami and microtubules. The DNA origami were formed from six DNA helices bundled together. Mixing the two components caused the microtubules to self-assemble around the DNA origami forming star-shaped structures. This self-assembly was made possible by the binding of complementary DNA strands attached to each component.

The team then designed a "kinesin linker" which is made of four kinesin motor proteins radiating from a central core protein. These kinesin linkers joined the microtubules together, causing multiple star-like assemblies to connect, forming a much larger hierarchical network.

When adenosine triphosphate (ATP), a molecule which stores and carries energy, was added to the system, the kinesin linkers moved, causing the microtubular network to dynamically contract within a matter of minutes. This resembled the contraction of smooth muscles according to the researchers.

This dynamic contraction only happened when the DNA origami were present, suggesting the importance of the hierarchical assembly within the microtubular network. "Further studies could lead to the use of DNA for controlled, programmable self-assembly and contraction of biomolecular motors. Such motors could find applications in molecular robotics and the development of microvalves for microfluidic devices," says Akira Kakugo.

Reference

Authors :
Kento Matsuda1, Arif Md. Rashedul Kabir2, Naohide Akamatsu3, Ai Saito1, Shumpei Ishikawa3, Tsuyoshi Matsuyama3, Oliver Ditzer4, Md. Sirajul Islam5, Yuichi Ohya3,5, Kazuki Sada1,2, Akihiko Konagaya6, Akinori Kuzuya3,5,*, and Akira Kakugo1,2,*
Title of original paper :
Artificial Smooth Muscle Model Composed of Hierarchically Ordered Microtubule Asters Mediated by DNA Origami Nanostructures.
Journal :
Nano Letters
DOI :
10.1021/acs.nanolett.9b01201 outer
Affiliations :
1Graduate School of Chemical Sciences and Engineering, Hokkaido University

2Faculty of Science, Hokkaido University

3Department of Chemistry and Materials Engineering, Kansai University

4Faculty of Chemistry and Food Chemistry, Technische Universität Dresden

5Organization for Research and Development of Innovative Science and Technology, Kansai University

6Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology

####

For more information, please click here

Contacts:
Further Information

Professor Akihiko Konagaya

School of Computing, Tokyo Institute of Technology

Email
Tel +81-45-924-5655

Contact

Public Relations Section, Tokyo Institute of Technology

Email
Tel +81-3-5734-2975

*Corresponding authors' email:

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Videos/Movies

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Oxford Instruments Asylum Research Jupiter XR Large-Sample AFM Now Includes New Ergo Software Interface for Even Greater Productivity June 18th, 2020

Tiny pump builds polyrotaxanes with precision: Artificial molecular pump gives precise control for materials design June 12th, 2020

Robotics

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Self-driving microrobots December 10th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Microrobots show promise for treating tumors: Caltech researchers demonstrate a robotic platform for delivering drugs in the human body July 25th, 2019

Possible Futures

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Molecular Machines

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Kavli Lectures: The art of building small and innovating for industrial impact August 7th, 2020

Polymers self-assembling like links of a chain for innovative materials: Nature just published the research on unprecedented "Self-assembled poly-catenanes" July 16th, 2020

Big energy savings for tiny machines May 24th, 2019

Molecular Nanotechnology

Big energy savings for tiny machines May 24th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

Self Assembly

Polymers self-assembling like links of a chain for innovative materials: Nature just published the research on unprecedented "Self-assembled poly-catenanes" July 16th, 2020

Self-assembling, biomimetic composites possess unusual electrical properties June 4th, 2020

Hair surface engineering to be advanced by nano vehicles: This new researched technology can help both drug delivery and hair cosmetics industry April 10th, 2020

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

Discoveries

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Announcements

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Who stole the light? Self-induced ultrafast demagnetization limits the amount of light diffracted from magnetic samples at soft x-ray energies September 18th, 2020

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Nanobiotechnology

Arrowhead ARO-AAT Phase 2 Interim Results in Patients with Alpha-1 Liver Disease Demonstrate Improvements in Key Parameters after Six Months of Treatment September 16th, 2020

Gentle probes could enable massive brain data collection: National Institutes of Health backing Rice’s Chong Xie to refine flexible nanoelectronics thread September 14th, 2020

Understanding electron transport in graphene nanoribbons: New understanding of the electrical properties of graphene nanoribbons (GRBs), when bounded with aromatic molecules, could have significant benefits in the development of chemosensors and personalized medicine September 11th, 2020

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells: Possible applications in x-ray imaging, cancer treatment September 11th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project