Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Strain improves performance of atomically thin semiconductor material

UConn Assistant Professor Michael Pettes, left, and Ph.D. student Wei Wu check a device they created to exert strain on a semiconductor material only six atoms thick, on April 18, 2018. The project proved conclusively that the properties of atomically thin materials can be mechanically manipulated to enhance their performance. The findings could lead to faster computer processors and better optical sensors.
CREDIT
Peter Morenus/UConn Photo
UConn Assistant Professor Michael Pettes, left, and Ph.D. student Wei Wu check a device they created to exert strain on a semiconductor material only six atoms thick, on April 18, 2018. The project proved conclusively that the properties of atomically thin materials can be mechanically manipulated to enhance their performance. The findings could lead to faster computer processors and better optical sensors. CREDIT Peter Morenus/UConn Photo

Abstract:
Researchers in UConn's Institute of Materials Science significantly improved the performance of an atomically thin semiconductor material by stretching it, an accomplishment that could prove beneficial to engineers designing the next generation of flexible electronics, nano devices, and optical sensors.

Strain improves performance of atomically thin semiconductor material

Storrs, CT | Posted on May 11th, 2018

In a study appearing in the research journal Nano Letters, University of Connecticut Assistant Professor of Mechanical Engineering Michael Pettes reports that a six-atom thick bilayer of tungsten diselenide exhibited a 100-fold increase in photoluminescence when it was subjected to strain. The material had never exhibited such photoluminescence before.

The findings mark the first time scientists have been able to conclusively show that the properties of atomically thin materials can be mechanically manipulated to enhance their performance, Pettes says. Such capabilities could lead to faster computer processors and more efficient sensors.

The process the researchers used to achieve the outcome is also significant in that it offers a reliable new methodology for measuring the impact of strain on ultrathin materials, something that has been difficult to do and a hindrance to innovation.

"Experiments involving strain are often criticized since the strain experienced by these atomically thin materials is difficult to determine and often speculated as being incorrect," says Pettes. "Our study provides a new methodology for conducting strain-dependent measurements of ultrathin materials and this is important because strain is predicted to offer orders of magnitude changes in the properties of these materials across many different scientific fields."

Scientists have been intrigued by the potential of atomically thin materials ever since researchers Andre Geim and Konstantin Novoselov successfully cleaved a one-atom thick layer of graphene from a piece of graphite in 2004. Considered a supermaterial for its outstanding strength, flexibility, and ability to conduct electricity, two-dimensional graphene transformed the electronics industry and earned the researchers a Nobel Prize.

But for all that it offers, graphene has its limitations. It is a poor semiconductor because it lacks an electron band gap in its internal structure. As a result, electrons are unimpeded and flow rapidly through it when the material is energized. The best semiconductor materials, such as silicon, have a sizable band gap that allows a flow of electrons to be turned on and off. That capability is vital for creating the strings of zeros and ones that make up the binary computing codes used in transistors and integrated circuits.

Materials scientists are exploring the potential of other two-dimensional and atomically thin materials hoping to find products superior to graphene and silicon.

Strain engineering has been discussed as one possible way to enhance the performance of these materials because their ultrathin structure makes them particularly susceptible to bending and stretching, unlike their larger three-dimensional bulk forms. But testing the impact of strain on materials just a few atoms thick has proven enormously difficult.

In the present study, Pettes and Wei Wu, a Ph.D. student in Pettes' lab and the study's lead author, were able to successfully measure the influence of strain on a single crystalline bilayer of tungsten diselenide by first encapsulating it in a fine layer of acrylic glass and then heating it in an argon gas chamber. (Exposure to air would destroy the sample). This thermal processing strengthened the material's adhesion to a polymer substrate, allowing for a near perfect transfer of applied strain, which has been difficult to achieve in prior experiments.

The group then customized a bending device that allowed them to carefully increase strain on the material while monitoring how it responded through a Horiba Multiline Raman Spectrometer at the Harvard Center for Nanoscale Systems, a shared user facility funded by the National Science Foundation.

It was an exciting moment.

"Our new method allowed us to apply around two times more strain to the 2-D material than any previous study has reported," says Pettes. "Essentially, we were in new territory."

Ultimately, the researchers found that applying increasing levels of strain to the material altered its flow of electrons, which was reflected by the increased intensity in photoluminescence.

Working with UConn Assistant Professor of Materials Science and Engineering Avinash Dongare, an expert in computer modeling, and former Ph.D. student Jin Wang, the team was able to show that their process could, theoretically, manipulate the band gap of tungsten diselenide and other atomically thin materials, which is extremely important for design engineers seeking faster and more efficient semiconductors and sensors. Manipulating a semiconductor with an indirect band gap very near the point of transitioning to a direct band gap could lead to extremely fast processing capabilities.

"This is the first time that extrinsic control over an indirect-to-direct electron band gap transition has been conclusively reported," says Pettes. "Our findings should allow computational scientists using artificial intelligence to design new materials with extremely strain-resistant or strain-sensitive structures. That is extremely important for the next generation of high performance flexible nanoelectronics and optoelectronic devices."

Joining Pettes and Wu on the research were two undergraduate students: UConn senior Nico Wright, a former McNair Scholar and participant in NSF's Research Experiences for Undergraduates (REU) program; and Danielle Leppert-Simenauer, also a former participant in NSF's REU program and currently an undergraduate majoring in physics at the University of California-San Diego.

The U.S. Army Research Laboratory in Adelphi, Maryland provided graphene films that were used to confirm the calibration standards applied by the UConn researchers to measure strain. The atomic-level thickness of the tungsten diselenide bilayer was confirmed through transmission electron microscopy in the Molecular Foundry at Lawrence Berkeley National Laboratory.

####

For more information, please click here

Contacts:
Colin Poitras

860-486-4656

Copyright © University of Connecticut

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

2018 Kavli Prizes in Astrophysics, Nanoscience, and Neuroscience to be Announced Live on May 31: Live announcement at the Norwegian Academy of Science and Letters to be streamed live at World Science Festival Event May 24th, 2018

Hardware

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Graphene/ Graphite

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

Nanoscale measurements 100x more precise, thanks to improved two-photon technique May 8th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

2 Dimensional Materials

Nanoscale measurements 100x more precise, thanks to improved two-photon technique May 8th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Nanofabrication

A designer's toolkit for constructing complex nanoparticles May 5th, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

RIT researchers improve fabrication process of nano-structures for electronic devices: Use of indium gallium phosphide with I-MacEtch processing shows promise for more cost effective fabrication and increased performance in devices from photonics to telecommunications March 20th, 2018

Glass matters: UCSB researchers find that the chemical topology of silica can influence the effectiveness of many chemical processes that use it March 14th, 2018

Flexible Electronics

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Arrowhead Pharmaceuticals to Webcast Fiscal 2018 First Quarter Results February 3rd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Possible Futures

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Chip Technology

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Optical computing/Photonic computing

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

A powerful laser breakthrough: Lehigh research team demonstrates terahertz semiconductor laser with record-high output power May 2nd, 2018

Sensors

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Doing the nano-shimmy: New device modulates light and amplifies tiny signals April 12th, 2018

Scientists Use Nanotechnology to Detect Molecular Biomarker for Osteoarthritis March 13th, 2018

Nanoelectronics

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Nanoscale measurements 100x more precise, thanks to improved two-photon technique May 8th, 2018

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Discoveries

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Announcements

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

2018 Kavli Prizes in Astrophysics, Nanoscience, and Neuroscience to be Announced Live on May 31: Live announcement at the Norwegian Academy of Science and Letters to be streamed live at World Science Festival Event May 24th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Artificial Intelligence

Quantum algorithm could help AI think faster: Researchers in Singapore, Switzerland and the UK present a quantum speed-up for machine learning February 2nd, 2018

IBM Breaks Records to Top U.S. Patent List for 25th Consecutive Year: IBM Inventors Receive Record 9,043 Patents in 2017 in Areas such as Artificial Intelligence, Cloud, Blockchain, Cybersecurity and Quantum Computing January 11th, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX to Extend Its FD-SOI Platform and Technology Leadership : GFs FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Photonics/Optics/Lasers

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

A micro-thermometer to record tiny temperature changes May 15th, 2018

A powerful laser breakthrough: Lehigh research team demonstrates terahertz semiconductor laser with record-high output power May 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project