Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics

The images above, from the top left moving clockwise, shows an electronic circuit being increasingly stretched.
CREDIT
Shenqiang Ren
The images above, from the top left moving clockwise, shows an electronic circuit being increasingly stretched. CREDIT Shenqiang Ren

Abstract:
Like a yoga novice, electronic components don't stretch easily. But that's changing thanks to a variation of origami that involves cutting folded pieces of paper.

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics

Buffalo, NY | Posted on April 3rd, 2018

In a study published April 2 in the journal Advanced Materials, a University at Buffalo-led research team describes how kirigami has inspired its efforts to build malleable electronic circuits.

Their innovation -- creating tiny sheets of strong yet bendable electronic materials made of select polymers and nanowires -- could lead to improvements in smart clothing, electronic skin and other applications that require pliable circuitry.

"Traditional electronics, like the printed circuit boards in tablets and other electronic devices, are rigid. That's not a good match for the human body, which is full of bends and curves, especially when we are moving, says lead author Shenqiang Ren, professor in the Department of Mechanical and Aerospace Engineering.

"We examined the design principles behind kirigami, which is an efficient and beautiful art form, and applied them to our work to develop a much stronger and stretchable conductor of power," says Ren, also a member of UB's RENEW Institute, which is dedicated to solving complex environmental problems.

The study, which includes computational modeling contributions from Temple University researchers, employs nanoconfinement engineering and strain engineering (a strategy in semiconductor manufacturing used to boost device performance).

Without kirigami, the polymer - known as PthTFB -- can be deformed up to 6 percent from its original shape without changing its electronic conductivity. With kirigami, the polymer can stretch up to 2,000 percent. Also, the conductivity of PthTFB with kirigami increases by three orders of magnitude.

The advancement has many potential applications, including electronic skin (thin electronic material that mimics human skin, often used in robotic and health applications), bendable display screens and electronic paper. But its most useful application could be in smart clothing, a market that analysts says could reach $4 billion by 2024.

###

The research was supported the U.S. Department of Energy.

####

For more information, please click here

Contacts:
Cory Nealon

716-645-4614

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Robotics

Self-propelled, endlessly programmable artificial cilia: Simple microstructures that bend, twist and perform stroke-like motions could be used for soft robotics, medical devices and more May 6th, 2022

Shape memory in hierarchical networks – the astonishing property that allows manipulation of morphing materials with micro scale resolutions February 25th, 2022

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Actuator discovery outperforms existing technology: University of Houston researchers use organic semiconductor nanotubes to create new electrochemical actuator September 3rd, 2021

Display technology/LEDs/SS Lighting/OLEDs

A solution to perovskite solar cell scalability problems April 22nd, 2022

Graphene-hBN breakthrough to spur new LEDs, quantum computing: Study uncovers first method for producing high-quality, wafer-scale, single-layer hexagonal boron nitride April 15th, 2022

Graphene crystals grow better under copper cover April 1st, 2022

Inorganic borophene liquid crystals: A superior new material for optoelectronic devices February 25th, 2022

Wearable electronics

Graphene crystals grow better under copper cover April 1st, 2022

Flexible Electronics

Record-breaking hole mobility heralds a flexible future for electronics: Researchers from The University of Tsukuba grow a germanium thin film on a flexible polyimide substrate, resulting in a material with the highest hole mobility reported to date December 24th, 2021

Hardware

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

The future of desalination? A fast, efficient, selective membrane for purifying saltwater May 13th, 2022

Possible Futures

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Chip Technology

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Rice ‘metalens’ could disrupt vacuum UV market: Solid-state nanophotonic technology could potentially replace cabinets of equipment May 6th, 2022

Nanoelectronics

The physics of a singing saw: Insights on centuries-old folk instrument is underpinned by a mathematical principle that may pave the way for high-quality resonators for sensing, electronics and more April 22nd, 2022

Eyebrow-raising: Researchers reveal why nanowires stick to each other February 11th, 2022

Visualizing temperature transport: An unexpected technique for nanoscale characterization November 19th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Discoveries

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Announcements

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

Research partnerships

University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022

Rice ‘metalens’ could disrupt vacuum UV market: Solid-state nanophotonic technology could potentially replace cabinets of equipment May 6th, 2022

New quantum network shares information at a scale practical for future real-world applications: Researchers enable real-time adjustments to communication among three remote nodes in a quantum network April 22nd, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project