Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices

Raman spectrum of 8 L GaSe taken at two different times during time evolution map. (a) Red dashed line is drawn as the guide for the eye. The constant intensity ratio of of ${{{A}}^{1}}_{1{\rm{g}}}$ and a-Se peaks indicates that oxidation stops approximately after 16 500 s. Thickness dependent Raman spectrum of GaSe for oxidation investigation. (b) Each spectrum was taken with 700 s  3 of accumulation time.
CREDIT
Tomsk Polytechnic University
Raman spectrum of 8 L GaSe taken at two different times during time evolution map. (a) Red dashed line is drawn as the guide for the eye. The constant intensity ratio of of ${{{A}}^{1}}_{1{\rm{g}}}$ and a-Se peaks indicates that oxidation stops approximately after 16 500 s. Thickness dependent Raman spectrum of GaSe for oxidation investigation. (b) Each spectrum was taken with 700 s 3 of accumulation time. CREDIT Tomsk Polytechnic University

Abstract:
A research group consisting of scientists from Tomsk Polytechnic University, Germany and Venezuela proved vulnerability of a two-dimensional semiconductor gallium selenide in air. This discovery will allow manufacturing superconducting nanoelectronics based on gallium selenide, which has never been previously achieved by any research team in the world.

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices

Tomsk, Russia | Posted on September 22nd, 2017

The study was published in Semiconductor Science and Technology.

One of the promising areas of modern materials science is the study of two-dimensional (2D) materials, i.e. thin films consisting of one or several atomic layers. 2D materials due to their electrical superconductivity and strength could be a basis for modern nanoelectronics. Optic applications in nanoelectronics require advanced materials capable of 'generating' great electron fluxes upon light irradiation. Gallium selenide (GaSe) is one of the 2D semiconductors that can cope with this problem most efficiently.

'Some research teams abroad tried to create electronic devices based on GaSe. However, despite extensive theoretical studies of this material, which were published in major scientific journals, the stability of the material in real devices remained unclear,' says Prof. Raul Rodriguez, the Department of Lasers and Lighting Engineering.

The research team revealed the reasons behind this. They studied GaSe by means of Raman spectroscopy and x-ray photoelectron spectroscopy that allowed proving the existence of chemical bonds between gallium and oxygen. Photoluminescence in oxidized substance is absent that also proves the formation of oxides. It means that the scientists revealed that GaSe oxidizes quickly in air and loses its electrical conductivity necessary for creating nanoeletronic devices.

'GaSe monolayers become oxidized almost immediately after being exposed to air. Further research of GASe stability in air will allow making proposals how to protect it and maintain its optoelectronic properties,' emphasize the authors.

According to Prof. Rodriguez, for GaSe not to lose its unique properties it should be placed in a vacuum or inert environment. For example, it can be applied in encapsulated devices that are vacuum-manufactured and then covered with a protective layer eliminating air penetration.

This method can be used to produce next generation optoelectronics, detectors, light sources and solar batteries. Such devices of ultra-small sizes will have very high quantum efficiency, i.e. they will be able to generate large electron fluxes under small external exposure.

####

For more information, please click here

Contacts:
Kristina Nabokova

382-270-5685

Copyright © Tomsk Polytechnic University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

2 Dimensional Materials

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Hardware

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Leti Breakthroughs Point Way to Significant Improvements in SoC Memories December 6th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Possible Futures

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Chip Technology

Error-free into the quantum computer age December 15th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Optical computing/Photonic computing

Scientists make transparent materials absorb light December 1st, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Fast flowing heat in graphene heterostructures: Surprisingly fast heat flow from graphene to its surrounding November 29th, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nanoelectronics

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Will Present 11 Papers and Host More-than-Moore Technologies Workshop November 14th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Discoveries

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Photonics/Optics/Lasers

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project