Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops

Abstract:
SUNY Polytechnic Institute (SUNY Poly) Assistant Professor of Nanoengineering Dr. Spyros Gallis (Spyridon Galis) is part of a collaborative cross-institutional research team led by Stony Brook University’s Dr. Eden Figueroa, Associate Professor in the Department of Physics and Astronomy with a joint appointment at Brookhaven National Laboratory, that has secured a Conceptualization Grant of $150,000 from the National Science Foundation (NSF) Quantum Leap Challenge Institutes program.

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops

Albany, NY | Posted on January 27th, 2020

“SUNY Poly is thrilled to be participating in this significant area of research, and I congratulate Dr. Gallis and the entire team and their respective institutions on this award, which can help further enable frontier research, imperative national defense capabilities, and hands-on educational opportunities for students while supporting New York State’s continued leadership in this emerging field,” said SUNY Poly Interim President Dr. Grace Wang. “Working closely with our partners, we look forward to continuing our efforts to build upon the resources and expertise that SUNY Poly brings to the table to drive advances in quantum information science and engineering.”



The award recognizes a collaborative effort to drive quantum information science-related (QIS) research and is led by faculty and research staff who represent institutions that include Stony Brook University, Brookhaven National Laboratory, The University at Buffalo, and SUNY Poly. The goal is to develop a proposal for the next round of Challenge Institute funding, which could mean millions in additional NSF support to fund a quantum-focused center where researchers can advance everything from quantum devices and materials to distributed quantum systems.



“I am grateful to the NSF Quantum Leap Challenge Institutes program for the support of this collaborative research, which can enable impactful progress in the areas of quantum information science, including quantum communications. Our research team is eager to continue to work closely with our colleagues at Stony Brook, BNL, and the University at Buffalo on this effort,” said Dr. Gallis. “We are not only advancing research with significance for strategic U.S. high-tech capabilities, but we are also supporting opportunities for the next generation of researchers to gain valuable experience in these exciting areas of R&D.”



Previously, in 2018 Dr. Gallis received $130,000 from the NSF—Directorate of Engineering for research which aims to help develop critical physical properties and provide a fundamental understanding of new silicon carbide photonic nanostructures that have erbium ions added to them for the realization of high-temperature CMOS-compatible quantum emitters at telecommunications wavelengths. The goal is for the emission from erbium ions at telecommunication wavelengths to be controlled and amplified by the photonic nanostructures for the improvement of light-based devices, with applications in areas such as biological imaging and sensing, quantum storage of single-photons, and long-distance quantum communications.



Complementing the latest collaborative grant, Dr. Gallis has also received an NSF supplemental grant to support Research Experiences for Undergraduates (REU), providing valuable team-driven educational experiences for an undergraduate student through their participation in the ongoing NSF research project, and specifically for the development and upgrade of a near-infrared single-photon microscope system.



In July, SUNY Poly’s Utica campus served as an international hub for next-generation quantum information science efforts as it hosted the first Air Force Research Laboratory—Information Directorate (AFRL) International Quantum Information Science Workshop, with nearly 200 leaders from across the globe sharing research discoveries and advancements in this rapidly expanding field. Keynote speakers included those from the National Institute of Standards and Technology (NIST), the U.S. Air Force, and the National Quantum Coordination Office, and it featured a live demonstration of quantum concepts, a 40-poster presentation sharing recent quantum advances, and attendance by representatives from more than one dozen countries.



Since the workshop, a partnership with the AFRL, the Griffiss Institute, Oneida County, and SUNY Poly was announced, which will create a $12 million research center at Griffiss International Airport with the goal of connecting global technology leaders to collaborate and solve intricate Air Force computing challenges. It will link researchers from government, industry, and academia to share top minds, ideas, and facilities—virtually and in person—and look to use Quantum Information Processing to analyze and improve everything from computer hardware and software to data protection, cybersecurity, and artificial intelligence.

####

About SUNY Polytechnic Institute
SUNY Poly is New York’s globally recognized, high-tech educational ecosystem. SUNY Poly offers undergraduate and graduate degrees in the emerging disciplines of nanoscience and nanoengineering, as well as cutting-edge nanobioscience programs at its Albany campus, and undergraduate and graduate degrees in technology, including engineering, cybersecurity, computer science, and the engineering technologies; professional studies, including business, communication, and nursing; and arts and sciences, including natural sciences, mathematics, humanities, and social sciences at its Utica campus; thriving athletic, recreational, and cultural programs, events, and activities complement the campus experience. As the world’s most advanced, university-driven research enterprise, SUNY Poly boasts billions of dollars in high-tech investments and hundreds of corporate partners since its inception.

For more information, please click here

Contacts:
Steve Ference, Director of University Communications

(518) 956-7319 |

Copyright © SUNY Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum communication

Quantum network nodes with warm atoms June 24th, 2022

Major instrumentation initiative for research into quantum technologies: Paderborn University receives funding from German Research Foundation December 24th, 2021

Energizer atoms: JILA researchers find new way to keep atoms excited November 19th, 2021

Quantum Physics

Quantum network nodes with warm atoms June 24th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

News and information

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Laboratories

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

Finding coherence in quantum chaos: Theoretical breakthrough creates path to manipulating quantum chaos for laboratory experiments, quantum computing and black-hole research May 27th, 2022

A one-stop shop for quantum sensing materials May 27th, 2022

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

How randomly moving electrons can improve cyber security May 27th, 2022

Self-propelled, endlessly programmable artificial cilia: Simple microstructures that bend, twist and perform stroke-like motions could be used for soft robotics, medical devices and more May 6th, 2022

Software

CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022

Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021

Hardware

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Possible Futures

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Quantum Computing

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

Finding coherence in quantum chaos: Theoretical breakthrough creates path to manipulating quantum chaos for laboratory experiments, quantum computing and black-hole research May 27th, 2022

Announcements

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Military

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

Nanostructured fibers can impersonate human muscles June 3rd, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Aerospace/Space

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Artificial Intelligence

Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022

‘Nanomagnetic’ computing can provide low-energy AI, researchers show May 6th, 2022

Development of low-power and high-efficiency artificial sensory neurons: 3T-OTS device to simulate the efficient information processing method of the human brain. A green light for the development of sensor-AI combined next-generation artificial intelligence “to be used in life a April 8th, 2022

Artificial neurons go quantum with photonic circuits: Quantum memristor as missing link between artificial intelligence and quantum computing March 25th, 2022

Events/Classes

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Could quantum technology be New Mexico’s next economic boon? Quantum New Mexico Coalition aims to establish state as national hub April 1st, 2022

Research partnerships

New technology helps reveal inner workings of human genome June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project