Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells

On the left, in vivo image of nanomachines using current microscopy techniques; on the right, the new method allows 3D observation of nanomachines in vivo and provides 25-fold improvement in resolution (O. Gallego, IRB Barcelona)
On the left, in vivo image of nanomachines using current microscopy techniques; on the right, the new method allows 3D observation of nanomachines in vivo and provides 25-fold improvement in resolution (O. Gallego, IRB Barcelona)

Abstract:
Currently, biologists who study the function of protein nanomachines isolate these complexes in test tubes, divorced from the cell, and then apply in vitro techniques that allow them to observe their structure up to the atomic level. Alternatively, they use techniques that allow the analysis of these complexes within the living cell but that give little structural information. In this study, the scientists have managed to directly observe the structure of the protein machinery in living cells while it is executing its function.

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells

Barcelona, Spain | Posted on January 27th, 2017

"The in vitro techniques available are excellent and allow us to make observations at the atomic level, but the information provided is limited. We will not know how an engine works if we dissemble it and only look at the individual parts. We need to see the engine assembled in the car and running. In biology, we still do not have the tools to observe the inner workings of a living cell, but the technique that we have developed is a step in the right direction and we can now see, in 3D, how the protein complexes carry out their functions," explains Oriol Gallego, IRB Barcelona researcher and coordinator of the group that undertook this study, which also involved PhD student Irene Pazos.

Watching the nanometric machinery at work

The new strategy brings together methods from super-resolution microscopy -- a discovery that was recognised with the 2014 Nobel Prize in Chemistry -- , cell engineering, and computational modelling. The technology allows us to observe protein complexes with a precision of 5 nm*, a resolution "four times better than that offered by super-resolution and that allows us to perform cell biology studies that were previously unfeasible," explains Gallego. (*a nm is a millionth part of a mm. A hair has a width of 100,000 nm)

The researchers genetically modify cells in order to build artificial supports inside onto which they can anchor protein complexes. These supports are designed in such a way as to allow them to regulate the angle from which the immobilized nanomachinery is viewed. After, in order to determine the 3D structure of the protein complex, they use super-resolution techniques to measure the distances between different components and then integrate them in a process similar to that used by GPS.

Basic features of exocytosis

Gallego has used this method to study exocytosis, a mechanism that the cell uses to communicate with the cell exterior. For instance, neurons communicate with each other by releasing neurotransmitters via exocytosis. The study has allowed the scientists to reveal the entire structure of a key nanomachine in exocytosis and that until now was an enigma. "We now know how this machinery, which is formed by eight proteins, works and what each protein is important for. This knowledge will help us to better understand the involvement of exocytosis in cancer and metastasis -- processes in which this nanomachinery is altered," he explains.

>New studies
An understanding of how nanomachines carry out their cell functions has biomedical implications since alterations in the inner workings can lead to the development of diseases. With this new strategy in hand, it will be possible to study cellular protein machinery in health and in disease. For example, it would be possible to see how viruses and bacteria use protein nanomachines during infection, and to better understand the defects in complexes that lead to diseases in order to design new therapeutic strategies that reverse them.

The technique can be used on relatively large complexes. "Being able to see protein complexes measuring 5 nm is a great achievement, but there is still a long way to go to be able to observe the inside of the cell at the atomic scale that in vitro techniques would allow," says Gallego. "But", he continues, "I think that the future lies in integrating various methods and combining the power of each one".

Over five years, Oriol Gallego has developed this project in the Molecular Medicine Programme at IRB Barcelona through a Ramón y Cajal researcher contract awarded by the Ministry of Economy and Competitiveness and that will be ending soon. Gallego has already lined up two research placements, in Japan and Germany, to learn more about integrating microscopy techniques. "After, I would like to continue to do top-level research in Barcelona, and I hope that this study that has been published in Cell helps me to do so," comments the young researcher, whose focus lies in protein complex biology and in developing the technology that "makes the invisible visible".

####

For more information, please click here

Contacts:
Sonia Armengou

34-934-037-255

Copyright © Institute for Research in Biomedicine (IRB Barcelona)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference article:

Related News Press

News and information

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Imaging

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Feds back Rice U. study of nanoscale electrocatalysis: Professors Christy Landes, Stephan Link will analyze mechanisms to improve chemical reactions July 25th, 2018

Researchers use nanotechnology to improve the accuracy of measuring devices July 24th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Molecular Machines

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Molecular Nanotechnology

A molecular switch at the edge of graphene July 27th, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Nanomedicine

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Nanoscience and the future of healthcare kick off first day of ACS national meeting in Boston: Presidential events highlight safety, diversity and groundbreaking research August 2nd, 2018

Discoveries

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Announcements

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Tools

Nanometrics Delivers 100th: Atlas III System for Advanced Process Control Metrology Atlas III: Systems are qualified and in production for advanced devices in DRAM, 3D-NAND and Foundry/Logic August 2nd, 2018

Picosun’s ALD solutions make quality watches tick July 26th, 2018

Nanometrics Announces Participation in Upcoming Investor Conferences July 25th, 2018

Researchers use nanotechnology to improve the accuracy of measuring devices July 24th, 2018

Nanobiotechnology

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Nanoscience and the future of healthcare kick off first day of ACS national meeting in Boston: Presidential events highlight safety, diversity and groundbreaking research August 2nd, 2018

Research partnerships

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Quantum chains in graphene nanoribbons: Breakthrough in nanoresearch August 9th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project