Home > Press > Notre Dame researchers find transition point in semiconductor nanomaterials
![]() |
Boldizsar Janko, left, Rusha Chatterjee and Masaru Kuno stand in the Kuno lab at Notre Dame |
Abstract:
Collaborative research at Notre Dame has demonstrated that electronic interactions play a significant role in the dimensional crossover of semiconductor nanomaterials. The laboratory of Masaru Kuno, professor of chemistry and biochemistry, and the condensed matter theory group of Boldizsár Jankó, professor of physics, have now shown that a critical length scale marks the transition between a zero-dimensional, quantum dot and a one-dimensional nanowire.
The findings, "Dimensional crossover in semiconductor nanostructures," were published in Nature Communications. Matthew P. McDonald and Rusha Chatterjee of Kuno's laboratory and Jixin Si of Jankó's group are also authors of the publication.
A quantum dot structure possesses the same physical dimensions in every direction while a quantum wire exhibits one dimension longer than the others. This means that quantum dots and nanowires made of the same material exhibit different optical and electrical responses at the nanoscale since these properties are exquisitely size- and shape-dependent. Understanding the size- and shape-dependent evolution of nanomaterial properties has therefore been a central focus of nanoscience over the last two decades. However, it has never been definitively established how a quantum dot evolves into a nanowire as its aspect ratio is made progressively larger. Do quantum properties evolve gradually or do they suddenly transition?
Kuno's laboratory discovered that a critical length exists where a quantum dot becomes nanowire-like. The researchers achieved this breakthrough by conducting the first direct, single particle absorption measurements on individual semiconductor nanorods, an intermediate species between quantum dots and nanowires. Single particle rather than ensemble measurements were used to avoid the effects of sample inhomogeneities. Furthermore, an absorption approach rather than an often-used emission approach was employed to circumvent existing limitations of modern emission-based single particle microscopy-namely, its restriction to the observation of highly fluorescent specimens.
The discovery marks a significant advance in our understanding of the size- and shape-dependent quantum mechanical response of semiconductor nanostructures. "All of the introductory-level solid state or semiconductor textbooks need to revise what they say about dimensional crossover," Jankó said. "This is another example where interactions makes things completely different." Beyond this, Kuno suggests that the single particle absorption approach advanced in the study "has practical, real-world applications, maybe 40 years down the road." Examples include the generic and label-free ultrasensitive detection of chemical and biomolecular species of paramount interest within the spheres of homeland security as well public health.
Kuno's group performed the experiments that led to the discovery while Jankó's group provided theoretical support.
####
For more information, please click here
Contacts:
Masaru Kuno
574-631-0494
Copyright © Notre Dame
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
New technique builds super-hard metals from nanoparticles January 22nd, 2021
Researchers develop new graphene nanochannel water filters January 22nd, 2021
Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021
Possible Futures
New technique builds super-hard metals from nanoparticles January 22nd, 2021
Researchers develop new graphene nanochannel water filters January 22nd, 2021
Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021
Chip Technology
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
Sensors
Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes. December 14th, 2020
An LED that can be integrated directly into computer chips: The advance could cut production costs and reduce the size of microelectronics for sensing and communication December 14th, 2020
Stretchable micro-supercapacitors to self-power wearable devices December 11th, 2020
Nanoelectronics
Atomic-scale nanowires can now be produced at scale: Scalable synthesis of transition metal chalcogenide nanowires for next-gen electronics December 25th, 2020
Discoveries
New technique builds super-hard metals from nanoparticles January 22nd, 2021
Researchers develop new graphene nanochannel water filters January 22nd, 2021
Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021
Announcements
New technique builds super-hard metals from nanoparticles January 22nd, 2021
Researchers develop new graphene nanochannel water filters January 22nd, 2021
Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New technique builds super-hard metals from nanoparticles January 22nd, 2021
Researchers develop new graphene nanochannel water filters January 22nd, 2021
Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021
Homeland Security
Highly sensitive dopamine detector uses 2D materials August 7th, 2020
Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites don’t need liquid water to work January 14th, 2020
Quantum Dots/Rods
Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020
A quantum material-based diagnostic paint to sense problems before structural failure October 23rd, 2020
Quantum nanoscience
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021
Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |