Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Multicolor super resolution imaging: A method to monitor dynamic protein binding at subsecond timescales

Talin stretching and stretch-induced vinculin binding.
CREDIT: Mechanobiology Institute, National University of Singapore
Talin stretching and stretch-induced vinculin binding.

CREDIT: Mechanobiology Institute, National University of Singapore

Abstract:
Researchers from the Mechanobiology Institute (MBI) at the National University of Singapore have developed a new method, using super-resolution microscopy, to determine the length of stretched proteins in living cells, and monitor the dynamic binding of proteins, at sub-second timescales. This study was published in Nano Letters in May 2016.

Multicolor super resolution imaging: A method to monitor dynamic protein binding at subsecond timescales

Singapore | Posted on June 19th, 2016

Monitoring force-induced talin stretching and the dynamic binding of vinculin to talin

Cells are constantly exposed to mechanical forces. These signals influence cellular decision making by providing information cells need to determine how much of a particular protein to produce, when a specific gene should be expressed, or even whether a cell should move or remain where it is. Such information is crucial, for example, in maintaining the health, integrity and repair of tissues as we age. A clear example of when cells are exposed to forces is when we walk. Stretching or pulling forces are generated within our muscles, and these are passed through the muscle to connective tissue and bone. Although this information is generated at a tissue level, it converges on single cells within those tissues, and is detected and measured by subcellular, protein based, machines.

To measure the forces applied to a cell, specialized proteins may be deformed. A common way that this occurs is when a protein is stretched, just like how an elastic band stretches when subjected to pulling forces. Stretching of proteins can expose regions within them that are otherwise hidden. These regions can serve as docking sites for the attachment of other proteins. This leads to a snowball effect, wherein more and more proteins are able to bind, and larger molecular complexes or machines form to mediate a specific cellular function. This phenomena was recently explored by MBI Director, Professor Michael Sheetz, Senior Research Fellow Dr Felix Margadant and PhD student Ms Xian Hu (Edna), in work focused on characterizing the stretching of a force-sensing protein known as talin, and establishing the effect it has on the binding of another protein called vinculin.

Although several studies have shown the force-induced stretching of talin and talin-vinculin binding in vitro, simultaneous visualization of both these events and their correlation to specific cellular functions was not previously possible in living cells due to the rapid time scales at which they occur. Also, carrying out multicolor super resolution imaging in living cells is still very difficult. To overcome these challenges, Prof Sheetz and Ms Hu developed a novel, and highly advanced super-resolution imaging method, that allowed them to simultaneously monitor talin length in living cells, as well as the dynamics of vinculin binding, at single molecule level and millisecond timescale.

By attaching different fluorescent molecules (GFP and mCherry), to each end of the talin and a third fluorophore (Atto655) to vinculin, the researchers could monitor the precise subcellular location of each protein, and confirm that when talin was being stretched, vinculin bound to newly exposed sites. Interestingly, their findings often revealed clustered binding, with five or more vinculin molecules binding to talin in one second. Moreover, the binding of the first few vinculins seemed to energetically favor the successive binding of more vinculin molecules. Correlating vinculin binding dynamics with the amount of talin stretching, the researchers noted that maximum vinculin binding occurred at one specific end of talin (the N-terminal region), when talin was stretched to approximately 180 nm.

Understanding how talin and vinculin respond to stretching forces is crucial to understanding how cells respond to forces in our bodies. In this case, both proteins are found in larger molecular machinery called focal adhesions, which physically connect the interior of a cell with the material that is surrounding the cell, the extracellular matrix. Focal adhesions primarily function as signal relaying centers, and the information they transfer can induce cell growth and cell movement. When this signal processing is disrupted, or is not regulated, disease states arise and the body's ability to heal wounds, or maintain tissue integrity as we age becomes impaired.

Although important to facilitating these wider cellular and tissue processes, the talin-vinculin interaction is just one of many protein interactions to respond to force. It is hoped that this newly described method will pave the way for researchers to dissect other protein interactions, both within focal adhesions, and in other molecular machines, to improve our understanding of the many force-driven cellular processes that arise during development and continue through to aging.

####

For more information, please click here

Contacts:
Amal Naquiah

65-651-65125

Copyright © National University of Singapore (NUS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Life Extension/Cryonics

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

Preventing protein unfolding: Polymers can reinforce proteins under mechanical forces February 27th, 2016

Lifeboat Foundation launches 3 books December 16th, 2015

Hopes of improved brain implants October 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project