Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Preventing protein unfolding: Polymers can reinforce proteins under mechanical forces

Keten's work is featured on the cover of February's ACS Nano.
Keten's work is featured on the cover of February's ACS Nano.

Abstract:
When the body loses its ability to fold proteins into the correct shapes, the result can be irreversible and tragic. The accumulation of unfolded or misfolded proteins in the brain causes many devastating neurodegenerative diseases, including Alzheimer's, Parkinson's and amyotrophic lateral sclerosis (ALS).

Preventing protein unfolding: Polymers can reinforce proteins under mechanical forces

Evanston, IL | Posted on February 27th, 2016

In order to maintain their functions, structural proteins and engineered, protein-based materials need to avoid unfolding even under large mechanical stresses. Scientists, therefore, are exploring ways to design proteins that can survive extreme mechanical insults.

Northwestern Engineering's Sinan Keten has theoretically demonstrated that small proteins can be reinforced with covalently bonded polymers against mechanical unfolding. His computational model illustrates strategies for using this polymer conjugation to prevent proteins from rapidly unfolding even when stretched or pulled apart.

"If you apply a stress to a protein, we know it will start to unfold," said Keten, assistant professor of mechanical, civil and environmental engineering. "Given that proteins are subject to mechanical forces in the body and in all applications, it will be useful to reinforce them in this way."

Supported by the Office of Naval Research, Keten's research is featured on the cover of the February issue of the journal ACS Nano. Elizabeth DeBenedictis, a PhD student in Keten's lab, and Elham Hamed, a former postdoctoral fellow in Keten's lab, are the paper's first authors. DeBenedictis also created the painting that was used for the journal's cover image.

A protein's shape is related to its function. By coiling and folding into specific three-dimensional shapes, they are able to perform their different biological tasks. Proteins are held together by weak hydrogen bonds. When they unfold, these bonds break and are often replaced by hydrogen bonds with water.

"Once the water is in there, it's hard to reverse the process," Keten explained. "It's hard for the protein to refold."

Researchers have long known that attaching polymers to proteins can stabilize them thermally. But little is known from a mechanical perspective. Keten's team used a common protein structure, called an alpha helix, and a soft, nontoxic polymer called poly-ethylene-glycol to test the reinforcing strategy under mechanical forces. They found that, through hydrophobic and electrostatic interactions, the polymer can reside near the surface of the protein. This shields its backbone hydrogen bonds from being replaced by bonds with water molecules, enabling the protein to hold its specific shape much longer under constant stress.

"The protein can refold back to its original configuration more easily," he said. "When the polymer is close to the surface, you see refolding."

Not only could this finding inform medicine about how to treat or prevent protein unfolding diseases, but the method could be used to stabilize protein-based biomaterials, which is important giving vaccines longer shelf lives, improving drug delivery and creating stronger scaffolds for tissue engineering.

Next, Keten's team will create a design strategy for determining polymer and protein interfaces that work well together. The team also collaborates with experimental groups to explore applications that may benefit from Keten's computational models.

####

For more information, please click here

Contacts:
Hilary Hurd Anyaso

847-491-4887

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Nanometrics and Rudolph Announce Merger Agreement to Create a Premier Semiconductor Process Control Company June 24th, 2019

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Govt.-Legislation/Regulation/Funding/Policy

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Possible Futures

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Nanometrics and Rudolph Announce Merger Agreement to Create a Premier Semiconductor Process Control Company June 24th, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Nanomedicine

Nanometrics and Rudolph Announce Merger Agreement to Create a Premier Semiconductor Process Control Company June 24th, 2019

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Discoveries

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Announcements

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Nanometrics and Rudolph Announce Merger Agreement to Create a Premier Semiconductor Process Control Company June 24th, 2019

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Military

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Dashing the dream of ideal 'invisibility' cloaks for stress waves June 7th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Nanobiotechnology

Nanometrics and Rudolph Announce Merger Agreement to Create a Premier Semiconductor Process Control Company June 24th, 2019

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Life Extension/Cryonics

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

Multicolor super resolution imaging: A method to monitor dynamic protein binding at subsecond timescales June 19th, 2016

Lifeboat Foundation launches 3 books December 16th, 2015

Hopes of improved brain implants October 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project